The FNAL accelerator complex has been upgrading in increasing beam intensity and beam quality. A new beam halo diagnostic device is required in the beam transport line between booster and Recycler.
For this purpose, it was decided to introduce the wide dynamic range monitor technique that was developed in 2012 and has been in operation at the J-PARC beam transport line. The device is a...
In the recent project of China Spallation Neutron Source (CSNS), a new designed distributed stream-processing framework is applied as the fundamental schema of data process system on user cooperative instruments. It is constructed with the open-source Apache Kafka software, which aims to aggregate the big data for manipulation sharing, and also with a synchronous trigger and tagging system,...
To address non-standard Gaussian beam spot pro-files in injectors, this paper proposes a fitting algo-rithm based on Gaussian, the newly introduced Gener-alized Gaussian Type and Skewed Gaussian Type dis-tributions. These distributions are specifically de-signed to better fit non-Gaussian and asymmetric beam spots by automatically selecting the most suitable model. Validation using beam spot...
The applications of proton beams require precise diagnosis of their properties including spectrum and spatial distribution. Distinct from the case of traditional accelerators, limited online detectors are available for laser-driven proton beams with high transient fluence, somewhat impeding the progress in this field.
This paper presents an online proton spectrometer, named Scintillation...
An X-Ray pinhole camera beamline has been installed recently at SESAME storage ring as a very beneficial non-destructive tool, used to characterize the electron beam size and behaviour. The design of the beamline is kept as simple as possible with a modification on the copper absorber to provide a sufficient flux of X-ray proper for imaging. The beamline is under operation now and used for the...
The Beam Loss Monitoring system (BLM) for the HEPS booster ring consists of 27 plastic scintillators and 4 optical fibers. An open source hardware is used in the data acquisition of the Scintillator BLM system, to monitor the beam loss during the injection and energy ramping process. Design details and application is described in this paper and the commissioning results of is also present.
In proton accelerators, nonlinear effects, such as space charge effects and fringe field effects, significantly contribute to the nonlinear characteristics of beam dynamics and control strategies. These nonlinear characteristics increase the degree of coupling between accelerator control elements, complicating the beam commissioning process and extending beam tuning time.
Reinforcement...
High Energy Photon Source (HEPS) is a 6 GeV dif-fraction limited storage ring light source. An ultralow emittance of ~34 pm·rad is designed with a multiple-bend achromat lattice at storage ring. The transverse beam sizes at the dipoles will be less than 10 µm. In order to measure such small beam sizes in both directions, an X-ray beam diagnostic beamline is designed with bend-ing magnet as...
A series of upgrades has now begun to industrialize the applications of the experimental IPM electron LINAC. This includes upgrading the control system of the diagnostics tools and adding new tools and equipment to the system as well.
The aim is to build an integrated control system to collect and manage all diagnostics signals. This will allow us to continuously monitor and archive all of...
The Iranian Light Source Facility (ILSF) plays a crucial role in advancing accelerator science and applications. In this study, we explore innovative techniques for precise beam profile monitoring, focusing on two complementary methods: Incoherent Cherenkov Diffraction Radiation (ChDR) and scintillating screens. Incoherent ChDR occurs when a charged particle passes through a dielectric medium...
For diagnostics of the different bunch types at the BESSY II electron-storage ring, a streak camera and a fast-gated ICCD camera have been installed at two neighbouring beamlines*, both of which are powered by visible light from the same dipole magnet. This contribution is focused on the ICCD camera and its first applications. After an improvement regarding the ICCD repetition rate, the...
This paper presents a bunch-by-bunch profile measurement system, which includes an optical imaging frontend, a multi-channel photomultiplier tube (MAPMT) for photoelectric conversion, and a high-sampling-rate oscilloscope for data recording. The system is capable of measuring the transverse positions and sizes of each bunch in the storage ring during the beam availability period of the Hefei...
During experiments in particle accelerators online monitoring of energy distribution in particle beam is useful for correction of the accelerator setting and parameters. Time of flight (ToF) technique for energy monitoring is well known and approved method, which is used widely. Nevertheless ToF technique requires long flight bases especially for high energy particles and can’t be used to...
The Shanghai High repetition rate XFEL and Extreme light facility (SHINE) accelerates electrons to 8GeV with a high repetition rate of up to 1MHz. For the transverse beam profile measurement in the high energy sections wire scanner is used as an essential part of the accelerator diagnostic system, providing the tool to measure small beam size in an almost non-destructive manner. The prototype...
The main goal of NSRC SOLARIS is to provide the scientific community with high-quality synchrotron light. To achieve this, it is necessary to constantly monitor many subsystems responsible for beam stability and to analyze data about the beam itself from various diagnostic beamlines. This work presents an in-depth analysis of multi-modal, deep learning-based frameworks for fault detection...
The embedded EPICS control system for beam measurement is implemented based on the Zynq 7z020 SoC, which enables efficient and reliable real-time data acquisition, transmission, processing, and PV publishing of embedded IOCs. The data acquisition module uses a 24-bit ADC with a sampling frequency of 10Msps, which enables continuous sampling and data processing of detector signals, and...
Mass spectrometer, as a type of beam instrument, is capable of measuring and analyzing the mass and charge of different molecules and ions in a sample, thus identifying the type of particles. Mass spectrometer database software is an important part of mass spectrometer, which can realize the function of storing, managing, sharing and analyzing mass spectrometer data. Therefore, the...
Time measurement technology is widely used in modern nuclear physics and partical physics experiments,aerospace and laser ranging etc.As its core technology,time to digital converter(TDC) is increasingly important.This paper presents a high-resolution TDC implemented in Xilinx ZYNQ 7000 device with a new encoder.This design introduces a novel pipeline-multiplexer encoder that realises...
In an accelerator, the Beam Position Monitor (BPM), which typically consists of beam position probe and electronics, plays a role of providing information on the position of the beam in the vacuum chamber at the monitor location. The low-level RF (LLRF) control system is mainly used to control the high-frequency field and resonant frequency of the accelerating cavity to ensure the stable...
The beam transverse profile is very essential in the beam diagnostics of a high intensity proton accelerator. A Residual Gas Ionization Profile Monitor (IPM) has been developed and implemented as a non-destructive diagnostic tool at the LRBT of CSNS. The design specifics of the IPM and presents initial measurements conducted in ion collecting mode are discussed in this paper. Big challenges...
Beam position monitors are critical to ensuring that particle beams pass correctly through the various components of an accelerator, especially in high-precision experimental facilities such as colliders and synchrotron radiation sources. In recent years, in order to improve the performance and reliability of BPM systems, electronic systems based on MicroTCA have been widely developed and...
Beam quality from photoinjectors is crucial for lasing in Free Electron Laser (FEL) facilities. While phase space measurement are usually limited to 2D with conventional methods, the recently-developed transverse deflecting cavities (TDCs) with variable polarization provide the capability to measure multi-dimensional phase space information. Such information could guide the improvement of...
The primary function of the HEPS (High Energy Photon Source) collimator is to intercept lost particles induced by the Touschek effect, thus localizing beam loss and reducing it outside the collimator region. It also acts as a dump in emergency situations to meet equipment protection requirements. The collimator control system utilizes EtherCAT bus technology for precise motion control of the...
Electronic components in spacecrafts and satellites are subjected to impact of high energy particles and heavy ions. Radiation damage of semiconductor electronic devices depends on linear energy transfer (LET) of the particle in semiconductor material which the device is fabricated of. During radiation testing of electronic components for space applications in particle accelerators we have...
With the development of precise radiotherapy, high-throughput data transmission has become a critical component of beam diagnostics, i.e. for closed orbit feedback in the synchrotron, beam profile images captured with view screens, and medical images generated at the therapy terminal. As the volume of generated measurement data rapidly increase, the data transmission mode that utilizes...
Sensitive cameras are frequently operated to record low-light processes such as Beam Induced Fluorescence or optical transition radiation for transverse profile determination. We compared four cameras based on different principles: Firstly, we investigated an Image Intensifier equipped with a double MCP (producer ProxiVision); secondly, an electron-multiplied CCD (emCCD Teledyne Princeton...
Visible light range of Synchrotron radiation is a versa-tile diagnostics tool for accelerator studies and measurements. SESAME’s storage ring has a dedicated diagnostics visible light beamline from 6.5-degree beam port of bending magnet source point. The beamline will host in future a time-correlated single photon counting unit to measure the bunch filling pattern, fast gated camera and a...
In the past, the longitudinal multibunch feedback (MBFB) at the Swiss Light Source (SLS) storage ring had used an analog upconverter to translate the output signal of a 500 MSample/s DAC to the 1.25-1.5 GHz operation frequency range of the longitudinal MBFB kicker magnet and its power amplifier. For SLS 2.0, we have investigated the possibility to drive the power amplifier of a newly designed...
A Long Radial Probe is a device used to measure the transverse beam profile in a cyclotron along its radius. The current iteration of the probe was installed in the PSI Main Ring Cyclotron in 2022. After a successful start, the probe encountered issues due to strong coupling with RF fields leaking from the cavities, which resulted in the breakage of the carbon fibers. A series of corrective...
Although there is no clear definition of beam halo in particle accelerators, it is generally regarded as particles outside of the beam core with an intensity level of less than 10-5 or 10-6 of the peaks. In high-intensity, high-power hadron accelerators, the presence of halo particles may cause emittance growth and beam loss, difficulties in beam control and collimation, increase the noise of...
A generic signal processor has been developed for beam diagnostic system in SHINE. The stand-alone processor is used for the signal processing of stripline BPM, cavity BPM, cold button BPM, beam arrival measurement, bunch length measurement and other diagnostic systems. The main core is a SoC FPGA, which contains both quad-core ARM and FPGA on a chip. The ARM runs LINUX OS and EPICS IOC, and...
To address the high demand for precise low current measurements at the Sirius accelerator and its beamlines, a quad-channel high-resolution Ethernet picoammeter has been designed*. The instrument can measure currents ranging from picoampere to milliampere across eight selectable ranges, featuring integrated ADCs enabling sample rates of up to 2 ksps and synchronization capabilities. This work...
We present the MicroTCA.4 electronics, an AMC-RTM pair, for direct sampling of wideband signals with high-speed ADCs, versatile digital signal processing with a SoC FPGA and driving of wideband signals with high-speed DACs. Its core component is the Zynq UltraScale+ RFSoC Gen 3. The RFSoC IC was mainly designed for the telecommunication and RADAR systems, however, it is also planned for...
A data monitoring system based on CA and EPICS designed for particle accelerators is proposed, which leverages Docker containers for deployment and integrates InfluxDB for data storage and Grafana for data visualization. The Data Collection Engine built with Python gathers data through EPICS Channel Access, caches it temporarily, and stores it permanently in InfluxDB. A two-level cache design...
The optical timing system of the FERMI facility underwent a significant upgrade to accommodate requests for additional pulsed links for remote lasers or diagnostic stations. Following the successful completion of compliance tests, the long-term performance of the extended system has been recently evaluated through out-of-loop measurements. In the setup each of the two pulsed subsystems,...
The upgrade of the fast orbit feedback (FOFB) system is currently underway at the PF-ring. The new FOFB system consists of MicroTCA-based BPM electronics and a feedback control (FBC) unit. The BPM electronics are prepared with the same number as BPMs and synchronously transmit 10-kHz rate beam position data to the FBC unit via an optical data link. The FBC unit immediately calculates the...
SOLARIS, as a big-science facility, is obliged to provide the best possible conditions for conducting research. Due to the complex nature of synchrotron subsystems, we have met our needs and created the most convenient control system possible. The result of our work is a new graphical application for operators offering high level control over the most crucial subsystems of the synchrotron...
In the past year, the wire scanner at SXFEL is upgraded to a new firmware. Unlike the previous version, where a target frame is equipped with tungsten wires in three directions, the new system uses horizontal and vertical independent scanning methods. The beam loss detector adopts plastic scintillator fiber, and the PMT module is also designed with a Raspberry PI for dynamic signal...
Beam Gas Ionization monitors have been in operational use in the CERN PS for two years now, and they were installed in the SPS this year. An overview of the operating principal of the instruments is presented, followed by an update on their development. The mechanical design has been simplified and the Timepix3 devices are now mounted individually for easier assembly and maintenance. ...
To enhance the performance of the next generation of X-ray free electron lasers (XFEL), it is essential to produce a high quality electron beam with a low emittance, for instance, below 0.2 mm-mrad for a 100 pC bunch charge. In order to demonstrate the fundamental techniques required for future FEL facilities, a C-band photoinjector test facility has been constructed aligning with the Southern...
SOLARIS, a third-generation synchrotron radiation source in Kraków, Poland, is dedicated to providing high-brilliance X-ray beams for various scientific disciplines. The successful operation of a synchrotron radiation facility heavily relies on precise control of the electron beam orbit within the storage ring. Orbit deviations, even on a small scale, can adversely affect beam quality, leading...
For the ongoing upgrade of the Swiss Light Source (SLS) storage ring, the previous ageing beam-based feedbacks and beam position monitor (BPM) systems are replaced by newly developed versions, where beam commissioning is planned to start in January 2025. Feedbacks include the fast orbit feedback (FOFB), transverse and longitudinal multibunch feedback (MBFB), and filling pattern feedback...
Accurate measurement of flux rate is essential in heavy-ion single event effects tests, but it presents significant challenges for monitoring low energy (5~10 MeV/u) and low intensity (less than 1E6 /s) heavy-ion beams. In this paper, we propose a novel detector that enables real-time monitoring of flux rate by simultaneously measuring the beam intensity and profile using secondary electrons...
Future large high-luminosity electron-positron collid- ers such as Circular Electron Position Collider (CEPC), and Future Circular Collider (FCC-ee) require nanometre-sized beams at the interaction point (IP). The luminosity is very sensitive to the beam orbit drifts at the IP. It is essential to have a fast luminosity feedback system at the IP to maintain optimum beam collision conditions and...
The China Spallation Neutron Source (CSNS) is the fourth established pulsed spallation neutron source in the world. With the construction and operation of multiple new neutron instruments, a new generation of streaming data transmission solutions based on message middleware has been formally implemented. This paper presents a streaming data readout and processing software designed to meet the...
This paper presents a comprehensive solution for the real-time collection and analysis of BPM telemetry data using Kafka and the ELK stack. It includes the transmission of PV variables from BPM electronic devices to the Kafka message queue, thus realizing a powerful and scalable data streaming process. By retrieving JSON formatted data from Kafka using the ELK stack, efficient data indexing...
The Time Project Chamber (TPC) serves as the core detector of the CEE spectrometer, which accurately measures dE/dx, momentum information, and charged particle tracks in the final state of large angularly separated reaction products of nuclear reactions at the Cooling Storage Ring External-target Experiment (CEE) at the Heavy Ion Research Facility in Lanzhou (HIRFL). It is used to investigate...
In order to reduce the projected transverse beam emittance, a solenoid is usually used at normal conducting as well as superconducting radio frequency (SRF) photoinjectors. At the ELBE SRF Gun-II, a superconducting solenoid is located inside the gun´s cryomodule about 0.1 m far from the end of the gun cavity. The solenoid has a longitudinal magnetic field on the axis with a Gaussian-like shape...
Peking University plans to conduct experimental research on a THz FEL (Terahertz Free Electron Laser) amplifier using a DC-SRF (Superconducting Radio Frequency) electron gun. The DC-SRF electron gun, which is capable of generating high-quality electron beams with high repetition rates and low emittance, is suitable for use in large scientific facilities such as FELs and ERLs. The experimental...
More than 4 Ionization Profile Monitors (IPM) have been mounted in HIRFL, which play an important role in the beam optics optimization, electron cooling research, and ion-electron recombination study so on since 2016.
To meet the profile needs of HIAF project with multiple beam species and high dynamic challenges, mainly two kinds of IPM structure have been chosen. At first, 5 IPMs equipped...
The Shenzhen Innovation Light Source Facility (SILF), as a 4th light source, is an accelerator-based multidiscipline user facility planned to be constructed in Shenzhen, Guangdong, China. The accelerator complex is composed of a 200 MeV linac, a booster with ramping energy from 0.2 GeV to 3.0 GeV, and a 3.0 GeV storage ring, and two e-beam transport lines for injection and extraction among...
The commonly used bunch-by-bunch transverse feedback system is based on the scheme of analog down-conversion, which down converts the 3fRF beam signal to the baseband with a phase adjusted local oscillator. The system contains a large number of analog devices, which make the system complex and vulnerable to environment changes. Today, sampling the high frequency signal directly with high...
To serve the needs of the High Luminosity (HL) LHC, a consolidation of the beam wire scanner has been initiated. The instrument is a crucial tool for measuring the transverse beam profile by moving a thin carbon wire across the beam. It can only withstand a fraction of the LHC's nominal beam intensity but provides a reference to calibrate other instruments that operate non-invasively at higher...
The Siberian Ring Radiation Source (SKIF) is an upcoming 4th-generation SR source under construction in Novosibirsk, Russia. The designed beam emittance for SKIF is 75 pm-rad, which corresponds to a beam size of 6 micrometers at the observation point within the dipole magnet. The transverse beam dimensions are essential parameters for tuning and reliable operation of the facility. The SKIF...
The SKIF, a fourth-generation synchrotron radiation source is being constructed in Russia. This installation has an ultra-low emittance, allowing for high beam intensity in various scientific and technological fields. A crucial aspect of SKIF is its availability of diagnostic instruments that measure the beam transverse dimensions. This will allow for minimizing the emittance during operation...
The Nanogate-38 gated camera with a temporal resolution of 60 nanoseconds was used to measure the transverse beam dimensions in the BEP booster and the VEPP-2000 electron-positron collider. The camera was used in combination with a double-slit interferometer to measure the vertical beam size and with projection optics to construct a transverse beam profile in single-turn mode. Some beam...
The beam power is lifted up to 500 kW for the phase II of the China Spallation Neutron Source (CSNS-II) project, which is five times the power of CSNS-I. At the CSNS, the neutron beams are generated by the spallation reaction of 1.6-GeV protons striking on a tungsten target. The multiwire profile monitor (MWPM) in front of the proton beam window is the only instrument for long-term monitoring...
In recent years, with the development of powerful THz source technologies, THz structures are widely utilized for electron beam manipulation, such as acceleration, deflection, compaction and diagnostics. Taking the bunch length measurement as an example, combining with high field strength and high resonant frequency, the THz structure based deflector could reach femtosecond or even...
The Rare Isotope Accelerator Complex for ON-line Experiments (RAON) is a facility designed to produce rare isotope beams using the ISOL and IF methods. RAON has a variety of diagnostic devices to measure beam characteristics. Among them, emittance is an important parameter in determining beam characteristics. RAON was applied the Multi-wire scan and Quadrupole scan methods to measure emittance...
In SSRF phase II upgrade project, , a specified hybrid bunch was designed to be injected up to 20mA in Hybrid Filling Pattern. Although it is currently unclear to what extent the transverse instability would affect the accumulation of the hybrid bunch current , the beam-line station still hopes to obtain higher luminous flux. For this purpose, an independent feedback loop has been added to...
tarting with my first experience of the transverse feedback damper in the KEK 12 GeV PS in 2005 - 2006, where we tested with analog system and in addition digital control-ler from SPring-8 team. Since then, digital systems have come to cover almost all the machines. In J-PARC MR bunch-by-bunch transverse feedback system had been introduced with a collaboration at the proton beam power around...
A superconducting cyclotron-based proton therapy system has been developed at the China Institute of Atomic Energy (CIAE). For the 230MeV proton thera-py cyclotron (CYCIAE-230), the beam profile is cru-cial for the adaptation of the proton therapy planning system and an important basis for the commissioning of the beam line. CIAE designed the scanning wires device for the proton therapy...
Non-invasive and turn-by-turn beam transverse profile monitoring is essential for the tunning and operating CSNS 1.6 GeV Rapid Cyclic Synchrotron. A residual gas Ionization Profile Monitor (IPM) was designed and installed in RCS for horizontal beam profile measurement. However, several challenges related to electromagnetic interference (EMI), vacuum, and MCP operation in the IPM were...
The 60 MeV Proton Radiation Effects Facility (PREF) spent nearly 1 month at the commissioning phase, during which the multi-strip ionization chamber (MIC) at the experimental terminal offered the core parameters, beam spot, scanning area, scanning uniformity, beam flux. However, the projection distribution provided by the MIC loses some information, such as the flux and the uniformity in a...
The measurement of the longitudinal phase space at the end of FERMI linac is one of the most important characterization of the electron beam properties prior to delivery to the FEL lines. It is performed using an RF-deflecting cavity in conjunction with a dipole to spread the beam in time and energy. The beam transverse distribution is then measure with a multiscreen. The original multiscreen...