Hefei Advanced Light Facility (HALF) is a fourth-generation vacuum ultraviolet and X-ray diffraction limit synchrotron radiation (DLSR) light source under construction. It is expected to have an ultra-low emittance and an extremely small beam size, which requires high-precision orbit detection and fast feedback control. The processor is the key component of the digital beam position monitor...
SKIF is a synchrotron radiation facility under construction in Novosibirsk.
Electron beam energy 3 GeV, beam current up to 0.4 A and extremely low horizontal beam emittance 75 pm$\cdot$rad are convenient to make a high-energy photon source at the main storage ring.
Gamma-photons are obtained using Compton backscattering (inverse Compton scattering) of IR, UV and visible laser...
" Laboratory for Ultrafast Transient Facility" is organically composed of two major categories of core parts: one is a Ultrafast Transient electron microscope cluster; the other is a Ultrafast Transient synchrotron radiation device that provides ultraviolet to X-rays. The first stage of synchrotron radiation device includes a 0.5 GeV linear accelerator as full energy injector, a high-current...
At the High Energy Photon Source (HEPS), a high orbital stability of typically 10 % of the beam size and angular divergence must be achieved, which implies that the beam orbit must be stabilized to the sub-micrometer level. A button and stripline beam position monitor (BPM) were designed based on the analytical formulas and CST simulations results. The results of electromagnetic field...
The Photo Injector Test Facility at DESY in Zeuthen (PITZ) has been developing high brightness electron sources for the XUV and soft X-ray free-electron facility (FLASH) and the European X-Ray Free Electron Laser facility (EuXFEL) at Hamburg. Its research fields have expanded into applications in recent years like THz FELs, and radiation biology for cancer treatment. Since the applications...
The PETRA IV project is set to enhance the current PETRA III synchrotron into an ultra-low-emittance source. The reduced emittance will impose stringent requirements on machine stability and operation. In order to cope with these requirements, bunch-by-bunch information is required from most of the monitor systems. For precise monitoring of beam position and charge, the Libera Digit 500...
The Cavity Beam Position Monitor (CBPM) system at Accelerator Test Facil- ity 2 (ATF2, KEK, Japan) operates with attenuation at a reduced 200 nm (vs measured 20-30 nm) resolution to cope with CBPM to magnet misalignment. In addition, CBPMs need regular calibrations to maintain their performance. To address these limitations, a pulse injection system is under development. This system aims to...
The 81.25 MHz quarter-wave resonator (QWR) and 162.5 MHz half-wave resonator (HWR) are selected as the main accelerating cavities for the superconducting ion linac of the High Intensity heavy-ion Accelerator Facility (HIAF) at the Institute of Modern Physics (IMP). Six QWR007 (βopt = 0.07) cavities and eight HWR015 (βopt = 0.15) cavities have been fabricated before the mass production to...
This paper will show beam position studies performed using a Cherenkov Diffraction Radiation (ChDR) based Beam Position Monitor (BPM) at Diamond Light Source (DLS). Displaying the characterisation of the BPM using the 3 GeV electron beam at DLS and comparing the effectiveness of this prototype to an existing Inductive Beam Position Monitor (IBPM) in use in the DLS Booster To Storage (BTS)...
The Proton Radiation Effects Facility (PREF) aiming for the displacement damage effect research was proposed by XTIPC (Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences) in 2018. The facility was designed and constructed by IMP (Institute of Modern Physics, Chinese Academy of Sciences). The beam commissioning of PREF had been started since August to September...
In this paper we are presenting the status of the partnership between Instrumentation Technologies and Elettra Sincrotrone Trieste for the realization of 200 BPM electronics for ELETTRA 2.0. Last year, 200 Pilot Tone Front-End (PTFE) units were successfully developed and produced. During the present year, 100 Digital Acquisition platforms, each one used to digitize and process the signals from...
Over the past two decades, laser-driven proton radiotherapy devices have garnered significant attention among novel accelerator technologies, due to their high acceleration gradient. Peking University is engaged in the construction and development of CLAPA-II (the Compact LAser Plasma Accelerator II), a proton therapy facility which utilizes a laser-plasma acceleration scheme. This facility...
Accurate monitoring and control of charged particle beams at the HL-LHC demands the development of new beam diagnostics tools. This poster provides an overview of the electro-optic beam position monitor (EO-BPM), currently taking measurements at CERN's SPS. This device uses the Pockels effect to monitor the transverse position and instabilities in the particle beam. Comprising of a laser...
The CSNS accelerator complex is upgrading the injection area to improve the beam-loss control during beam injection and acceleration in the Rapid Cycling Synchrotron. At CSNS, the linac beam energy will be increased from 80MeV to 300MeV employing a new superconducting accelerating section, and the beam power at the spallation target will be 500kW. To accomplish these requirements, a...
Wuhan Photon Source (WHPS), as a fourth-generation synchronous light source, imposes stringent requirements on the resolution and longitudinal coupling impedance of the Beam Position Monitor (BPM). To address the need for beam current monitoring in its 1.5 GeV diffraction-limited storage ring, an optimized design scheme for button BPM is proposed. Additionally, the structure of the BPM...
The machine protection system guarantees the safe operation of the HIAF (High Intensity heavy-ion Accelerator Facility) in different operating modes and also prevents damage to the online equipment in the event of a failure. Beam current data such as beam current position and phase is an important basis for analysing and diagnosing accelerator faults. In this paper, the authors designed the...
The Iranian Light Source Facility Booster is under design with a 504 m circumference and will accelerate the electron bunches from 150 MeV to 3 GeV. the 50 button-type beam position monitors (BPMs) are considered the non-destructive tools to measure the beam position in the ILSF booster. In this paper, the design of the BPM for the ILSF booster is studied. The BPM blocks have 4 buttons...
As many other light sources, ALBA is also going through an upgrade phase leading to ALBA II. In this context, new Beam Position Monitors (BPMs) have to be designed to fit the reduced vacuum chamber. The buttons and the block were designed to be as compact as possible minimizing the impedance to avoid overheat and maintaining a good signal level. Different shapes and materials were simulated...
The Insertion Device (ID) photon beam of a synchrotron can be contaminated with radiation from upstream and downstream bending magnets, causing position measurement errors in blade-type monitors. Beamlines of the low emittance storage ring are particularly sensitive to photon beam position variations, requiring more accurate measurements. To address this, we designed an ionization profile...
To convert weak current signals into voltage pulse signals proportionally, a 128-channel readout electronics system is developed. The front-end analogue circuits of this readout electronics system are designed based on the Charge to Frequency Converter (CFC) circuit structure, and the back-end digital board processes the voltage pulse signals. After the performance test in the laboratory and...
The High Intensity Proton Accelerator (HIPA) at PSI presently has an RF beam position monitor (BPM) system based on 20 year old Xilinx Virtex-2 Pro Systems-on-Chip (SoC), using application-specific integrated circuits (ASICS) for direct digital downconverters. For the planned upgrade of the electronics as well as for new HIPA projects, we started the development of a new HIPA BPM electronics,...
The Shanghai high repetition rate XFEL and extreme light facility (SHINE) under construction is designed as one of the most advanced FEL facilities in the world, which will produce coherent x-rays with wavelengths from 0.05 to 3 nm and maximum repetition rate of 1MHz. To achieve precise beam trajectory measurement and stable alignment of the electron and photo beams in the undulator, the...
MYRRHA (Multi-Purpose Hybrid Research Reactor for High-Tech Applications) aims to demonstrate the feasibility of high-level nuclear waste transmutation at industrial scale. MYRRHA Facility aims to accelerate 4 mA proton beam up to 600 MeV. The accurate tuning of LINAC is essential for the operation of MYRRHA and requires measurement of the beam transverse position and shape, the phase of the...
Beam position monitor(BPM) is used to measure the horizontal and vertical positions of the beam in the vacuum pip. Before online installation, it usually needs to be calibration. High Intensity Heavy-ion Accelerator Facility(HIAF) and China initiative Accelerator Driven System(CiADS) will need a large number of BPM, so it is a great challenge for BPM calibration work. In order to complete this...
High Energy Photon Source (HEPS) is a proposed new generation light source with a beam energy of 6 GeV, high brightness, and ultra-low beam emittance. An RF BPM has been designed at IHEP as part of an R&D program to meet the requirements of both the injection system and storage ring. The RF BPM architecture consists of an Analog Front-End (AFE) board and a Digital Front-End board (DFE) based...
The Korean 4GSR project is currently under construction in Ochang, South Korea, with the aim of achieving first beam commissioning in 2027. Designed to achieve an emittance approximately 100 times smaller than that of third-generation synchrotron radiation storage rings, the project requires the development of several high-precision beam diagnostic devices. In particular, the beam position...
The construction of China Accelerator Facility for Superheavy Elements(CAFe2) is advancing based on Chinese ADS Front-end Demo Linac(CAFe). However, the original Beam Position Monitor(BPM) read-out electronics of CAFe could not meet the requirements of the CAFe2 BPM probes in terms of quantity and the measurement demands of low-intensity heavy ion beams. In response to this challenge, a...
As part of the CSNS-II upgrade, the H- LINAC beam energy will be increased from 80 MeV to 300 MeV using superconducting cavities. To accurately measure beam position, phase, and energy, stripline-type Beam Position Monitors (BPM) are essential. The shorted-type stripline BPM was chosen for this upgrade due to its excellent S/N ratio and rigid structure. As space is limited in the LINAC's SC...
Huazhong University of Science and Technology is building a cyclotron-based Proton Therapy Facility (HUST-PTF). The facility mainly consists of a 240MeV superconducting cyclotron, a beam transport line, a fixed treatment room and two rotational treatment rooms. HUST-PTF uses three kinds of detectors, Scintillation, Faraday cup and ionization chamber, for the beam param-eter measurements. In...
We are developing a BPM system for the 6 GeV fourth-generation light source, SPring-8-II, which is a renewal of the third-generation light source, SPring-8. The new storage ring will be equipped with 340 button-type BPMs. BPM heads with molybdenum button electrodes have been designed to achieve the position sensitivity coefficients required for SPring-8-II as well as minimal beam impedance and...
For future continuous wave (CW) and high-duty-cycle operation of the European XFEL, research and development of the DESY L-band CW photoinjector is ongoing. The implementation of a superconducting radio frequency (SRF) gun operated at 1.3 GHz with a copper photocathode is the baseline option. The electron beam quality, in particular the slice emittance, produced by this injector is key for the...
The AWAKE facility uses novel proton beam-driven plasma wakefields to accelerate electron bunches over 10m of Rubidium plasma. Precise monitoring of 2 diverse beam types necessitates an electron beam position monitor (BPM) working in a frequency regime of tens of GHz. A high frequency conical button-style BPM with a working regime of up to 40 GHz has been investigated as a way to discriminate...
MYRRHA (Multi-Purpose Hybrid Research Reactor for High-Tech Applications) aims to demonstrate the feasibility of high-level nuclear waste transmutation at industrial scale. MYRRHA Facility aims to accelerate 4 mA proton beam up to 600 MeV.
Beam Position monitors are key elements in many accelerators. for instance, once BPMs are installed along a linear accelerator or a storage ring, they...
In response to CERN's need for alternative imaging solutions of scintillating screens due to the discontinuation of radiation-hardened VIDICON tubes, the single large-core multimode fiber (MMF) has been identified as a potential medium to transmit image signals to a CMOS camera situated away from radiation-prone areas. However, significant challenges in image distortion at the fiber's output...
The linac of INR RAS is а high-intensity accelerator of protons and H-minus ions, which is used for a complex of neutron sources, isotope production, proton irradiation and investigations in proton flash therapy. A non-destructive beam instrumentation plays a key role in the linac tuning. The general peculiarity of this multi-component system is that all detectors are home-made devices with a...
The China Initiative Accelerator Driven System (CiADS), a multi-purpose facility driven by a 500 MeV superconducting RF linac, is currently under construction in Huizhou, Guangdong. In order to ensure the stable operation of the superconducting linac, we conducted optimization research on the beam quality in the front-end section of CiADS. By using the point scraping method, part of the beam...
This paper presents the first experiences acquired with the new eBPM system based on pilot tone compensation, developed for Elettra 2.0. After the successful delivery of seven complete systems, belonging to a pre-series production within the signed partnership with Instrumentation Technologies, we started their integration in the current machine, in order to gain experience and develop all the...
INR RAS linac was developed in late 1970s and build during 1980s. Its timing system is based on the fifty years old technologies and requires full upgrade due to system stability decrease, lack of spare parts, progressing hardware degradation and increase in RF jamming. Moreover, the timing system upgrade should be done without additional accelerator complex shutdowns. In this paper a project...
Several experiments were done to measure the transverse beam size at the NCD ALBA beamline using the Heterodyne Near Field Speckles (HNFS) technique. Inside the FCC collaboration, it was decided to move these experiments to the ALBA Front End 21, where currently an x-ray pinhole camera is working since 2021. The goal is that the two measurement techniques can work alternatively and measure the...
Feedthroughs have been used for different accelerator detectors, such as BPM, BAM, CBPM, ACCT, and the RF cavities etc. that are used to test the beam properties and RF cavity signals. For this purpose, large bandwidth with low transfer loss is required. The long-life and high-stability are also needed. The SMA-type and N-type feedthroughs are developed. The bandwidth of the SMA-type is up to...
RF direct sampling and processing of beam signals has always been the goal pursued in beam diagnostic systems. Now it’s time to make it happen. For the first time, a high-sensitivity RF direct sampling processor has been developed for C-band cavity pickups in SHINE/SXFEL. It redefines the beam diagnostic system. There is no longer a need for complex analog down-conversion modules in...
The accurate measurement of the transverse position of a beam is crucial in particle accelerators, as it plays a key role in determining the beam parameters. Existing methods for beam position measurement rely on the detection of image currents induced on electrodes or the narrow-band wake field excited by the beam passing through a cavity-type structure. These methods have some limitations....
This article introduces the intermediate stage amplifier electronics for the HIAF Ring beam diagnostic system, it has intermediate stage amplifier, high-impedance preamplifier gain switching control, self-check, fiber communication, and enthernet communication functions. The intermediate stage amplifier has 4 channels, each channel has three gain states: 20dB, 0dB, -20dB, combining with...
Obtaining the complete distribution of a beam in high-dimensional phase space is crucial for predicting and controlling beam evolution. Based on the theory of maximum entropy tomography, we developed an algorithm for reconstructing the four-dimensional (4D) transverse phase space distribution. Our algorithm can take any number of 2D linear projections as constraints, and iteratively converges...
The beam position monitor (BPM) is a crucial instrumentation system for the commissioning and operation of the accelerator. Its accuracy and robustness are essential for ensuring the stability of the accelerator. Currently, the beam position is calculated by fitting a polynomial to the four voltage signals obtained from the BPM electrodes in BEPCII and HEPS. To improve the system’s...
The Nuclear Data Production System (NDPS) was constructed at Rare Isotope Accelerator complex for ON-line experiments (RAON) to produce nuclear data for neutron-induced reactions at a few tens of MeV. For the neutron time-of-flight measurement, various neutron detectors, such as gas-filled Parallel Plate Avalanche Counter (PPAC), MICRO-MEsh-GASeous (MICROMEGAS), and EJ-301 liquid scintillation...
The classical double-aperture interferometry using the visible part of the synchrotron radiation has been used in accelerators for beamsize measurements since the late 90s. However, this technique provides the beam size projection only in the direction given by the two aperture centers (i.e. only the horizontal or vertical direction). To fully characterize the transverse electron beam...
This study conducted offline calibration tests on the stripline Beam Position Monitor (BPM) designed for the Hefei Advanced Light Facility (HALF) injector. The Lambertson method was used to measure the off-set between the electrical center and the mechanical center of the BPM, with results showing horizontal and vertical offsets of 0.1154 mm and 0.1661 mm, respec-tively. Additionally, the...
The on-line calibration of beam synchronous phase (SP) is crucial for enhancing the operational efficiency of accelerators. Recently, we developed an artificial intelligence (AI)-based beam information measure model that uses transient beam loading information as input while simultaneously predicting beam current and SP. This method employs Long Short-Term Memory (LSTM) to extract...
The injection kicker design exploiting strip-lines and linear taper connections of the strip-lines to the feedthroughs was proposed and has been successfully used in the DAFNE electron-positron collider [1]. Such a design has helped to reduce the device beam coupling impedance, to improve the uniformity of the deflecting electromagnetic fields and to provide better matching with the...
The first phase of the China Spallation Neutron Source (CSNS) project aims to accelerate negative hydrogen ions to 80 MeV using a linear accelerator. Subsequently, these negative hydrogen ions are converted into protons after stripping, and then injected into a rapid cycling proton synchrotron. The proton beam is further accelerated to an energy of 1.6 GeV and guided through a beam transport...
Beam Position Monitors (BPMs) are essential in parti-cle accelerators for the precise measurement of beam trajectories. Considering the inherent inaccuracies in manufacturing and assembly, rigorous offline calibration processes are essential to guarantee the precision of beam position measurements. The predominant calibration technique, specifically the wire test method, is tailored for...
This paper presents a prototype of BPM electronics for experimental installation of free electron laser and high magnetic field (FEL-HMF). FEL-HMF integrates mid-long Infrared free electron laser, high magnetic field and cryogenic, which is a critical apparatus for new advanced materials especially for low-power electronic materials. The BPM electronics consists of two ADC chips and one FPGA...
This project aims to collect high-frequency high-precision data from the weak current signals generated by the quadrant-type diamond detector used for high-precision beam position monitoring. The main approach is to design a current conversion amplification circuit based on the theory of high-resistance I-V weak current to achieve fast conversion and collection of the four-channel weak current...
SOLEIL II is the low emittance upgrade project for Synchrotron SOLEIL, targeting an emittance of ~80 pm.rad. The new lattice includes 180 Beam Position Monitors (BPM). Due to the different constraints on the magnet yokes, beam stay clear and synchrotron radiation, 3 different types of BPM will be installed on the storage ring with inner diameter distributed between 16 and 24 mm....
The Iranian Light Source Facility Storage Ring is under design with a 528 m circumference and will store the electron bunches with 3 GeV energy to produce high-flux radiation that ranges from infrared to hard X-rays. Two Striplines are planned to be installed in the ILSF storage ring for beam tune measurement. The first one will be used for exciting the beam and the other for horizontal and...
Beam Position Monitor (BPM) system is an important part of the beam measurement system, which plays a vital role in the stable operation of the accelerator. In this paper, based on the requirement of high resolution of the BPM system, the DBPM algorithm is implemented on Matlab and FPGA, firstly, the overall design of the DBPM algorithm is introduced; secondly, the implementation method of...
The feasibility of X-ray Fresnel diffractometry to measure small beam sizes beyond the resolution of X-ray pinhole cameras is studied for the case of Diamond Light Source. After the Diamond-II upgrade, beam sizes as small as 4 µm are anticipated and are not resolvable by the X-ray pinhole cameras, which are the workhorse for beam size, emittance, and energy spread measurements. X-ray Fresnel...
Measuring the absolute position of the beam in the intensifier and storage ring of a high energy photon source (HEPS) requires measuring the offset between the electrical and mechanical centers of the beam position monitor (BPM). In the HEPS project, a four-electrode BPM is used, and the signals from each of the four electrodes of the BPM probe are led out by a cable. During the operation of...
The SESRI (Space Environment Simulation and Research Infrastructure) is a large-scale space science and technology experimental research accelerator clusters, the 300MeV proton and heavy ion accelerator is the key part. It consists of an ECRIS (Electron Cyclotron Resonance Ion Source), a linac cascade injector, a compact synchrotron, and three irradiation terminals. The proton and HI with...
Beam Position Monitors (BPM) are the non-destructive monitors used most frequently at nearly all linacs, cyclotrons, and synchrotrons. The most basic function of BPM is to provide the accurate position of the centre of mass of the beam for closed orbit feedback and other demands. However, due to the error of actual processing, the k value and the actual electric center will be different with...
Shenzhen Innovation Light-source Facility (SILF) is designed to be the so-called forth generation synchrotron radiation light source operating at 3.0 GeV, 300 mA, and with the emittance less than 100 pm∙rad. With the increase in luminosity of the light, higher stability of the electron beam is required, which may also result in increased measurement diversity and accuracy. Here, an overview of...
A BPM signal processor has been developed for SSRF since 2009. It composed of Virtex5 FPGA, ARM board, and 4 125MSPS sampling rate ADCs. Since then, electronic technology has made significant progress. Such as Zynq UltraScale+ MPSoC FPGA contains both hard-core ARM and high-performance FPGA, and ADCs with a sampling rate of 1GSPS have been applied in mass production. A new BPM processor with...
The electron accelerator S-DALINAC can be operated in conventional acceleration (CA) and energy recovery (ER) modes. In an ER mode, electrons pass the main linear accelerator (LINAC) twice as often compared to the corresponding CA mode: following the acceleration, the electrons are decelerated to return kinetic energy to the electromagnetic fields inside the cavities of the main LINAC. The...