Speaker
Description
In order to enhance the accelerating gradient of accelerators, cryogenic accelerating structures have been investigated. Based on material characteristics and technical conditions, a fundamental design has been accomplished. Photonic band-gap (PBG) structures employ a lattice of rods to impede the propagation of RF field through the lattice at specific frequencies while effectively damping higher order modes. The design of the single-cell PBG structure has been refined by altering the shape of the rods surrounding the defect region in order to miti-gate peak surface magnetic field within the structure. The combination of PBG cells and a bi-periodic accelerating structure has resulted in the design of a novel structure. This innovative configuration possesses the advantageous characteristics of a bi-periodic structure while incorporating the additional functionality of a PBG struc-ture to effectively damping higher order modes.
Funding Agency
Work supported by the Alliance of International Science Organizations (ANSO-CR-KP-2020-16) and the National Natural Science Foundation of China (No. 12175292).
Region represented | Asia |
---|---|
Paper preparation format | LaTeX |