

Contribution ID: 639 Contribution code: THPS16

Type: Poster Presentation

Study and Simulation of Cryogenic Photonic-Band-Gap Disk-loaded Structure

Thursday, 23 May 2024 16:00 (2 hours)

In order to further improve the accelerating gradient of accelerators, the cryogenic accelerating structure is studied. Based on material characteristics and technical con-ditions, the basic design is completed. Photonic band-gap (PBG) structures use a lattice of rods to prevent prop-agation of RF field through the lattice at certain frequen-cies while the higher order modes are damped. The de-sign of the single-cell PBG structure has been modified, which changes the shape of the rods surrounding the defect region to reduce the peak surface magnetic field in the structure.

Footnotes

Funding Agency

Work supported by the Alliance of International Science Organizations (ANSO-CR-KP-2020-16) and the National Natural Science Foundation of China (No. 12175292).

Paper preparation format

LaTeX

Region represented

Asia

Primary authors: WANG, Cheng (Shanghai Synchrotron Radiation Facility); GAO, Zihe (Shanghai Institute of Applied Physics)

Co-authors: SU, Dinghui (Shanghai Institute of Applied Physics); GONG, Hanyu (Shanghai Institute of Applied Physics); TIAN, Jia Hao (Shanghai Tech University); TAN, Jianhao (Shanghai Advanced Research Institute); XU, Junjie (Shanghai Institute of Applied Physics); WANG, ShuHua (Shanghai Institute of Applied Physics); FANG, Wencheng (Shanghai Synchrotron Radiation Facility); HUANG, Xiaoxia (Shanghai Synchrotron Radiation Facility); LU, Yixing (Shanghai Synchrotron Radiation Facility); GUO, Yusen (ShanghaiTech University)

Presenter: SU, Dinghui (Shanghai Institute of Applied Physics)

Session Classification: Thursday Poster Session

Track Classification: MC7: Accelerator Technology and Sustainability: MC7.T13 Cryogenics