Speaker
Description
We describe a high-efficiency source of muonium that can be transported as a beam in vacuum provides opportunities for fundamental muon and precision physics measurements such as sensitive searches for symmetry violation. Although PSI is currently the world leader, the intense 800-MeV PIP-II linac beam at Fermilab could provide world-class low-energy muon and muonium beams, with unparalleled intensity, driving the next generation of precision muon-based physics experiments at the intensity frontier. However, it is critical to initiate the prerequisite R&D now to prepare for the PIP-II era. A low-energy secondary muon line recently installed in an operating facility (the MeV Test Area, which utilizes the intense 400-MeV Fermilab Linac beam) could support the required R&D, and potentially compete for new physics in the immediate term, if approved. This beamline was developed for μ– and will need to be re-optimized for surface μ+ production and transport, making it also suitable for muon spin rotation physics––a unique research and industrial application for which no U.S. facility exists, and whose facilities are oversubscribed worldwide.
Region represented | North America |
---|---|
Paper preparation format | Word |