Speaker
Description
The Muon Cooling Complex is a crucial component of the future high-energy Muon Collider, where the ionization cooling technique is employed to reduce muon beam emittance by several orders of magnitude. This cooling technique necessitates the utilization of normal conducting, RF-accelerating cavities operating within a multi-Tesla magnetic field. This study illustrates the conceptual RF design of a 704 MHz copper cavity equipped with beryllium windows for the muon cooling demonstrator. Based on the specifications from the beam dynamics, frequency-domain eigenmode simulations have been conducted to calculate the primary RF figure of merits for the cavity. Subsequently, the cavity geometry has been optimized based on the results obtained from the eigenmode simulations. In a selected case, more advanced engineering analyses, including thermo-mechanical and Lorentz Force Detuning (LFD) simulations, have been performed to enable operation at gradients of up to 44 MV/m within strong solenoidal magnetic fields of up to 7.2 T.
Funding Agency
Funded by the European Union (EU). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the EU or European Research Executive Agency (REA).
Region represented | Europe |
---|---|
Paper preparation format | LaTeX |