Speaker
Description
Compact accelerator systems are assuming an increasingly significant role within the domain of radiotherapy. As processing technology continues to mature, X-band accelerators have garnered extensive utilization. This study introduces a design for a side-coupled traveling-wave Ku-band accelerator tube, leveraging established processing methodologies. The envisaged particle output energy stands at 2.5 MeV, with a microwave power source requiring a 300 kW input sourced from a klystron. The microwave design outcomes, derived using ANSYS HFSS, are delineated herein, alongside considerations pertaining to dynamic output and engineering design. Subsequent stages will subject this accelerator tube to processing tests, with the overarching objective of effectively supplanting the natural radiation source Co60 within the realm of radiotherapy.
Region represented | Asia |
---|---|
Paper preparation format | LaTeX |