Speaker
Description
The study investigates the radiation attenuation performance of five ternary glass systems with varying chemical compositions: 50P2O5-(50-x)BaO-xEu2O3, where x = 0, 1, 2, 4, and 6 mol%. It utilizes theoretical and Monte Carlo methods to determine shielding parameters such as attenuation coefficients, mean free path, value layers, electron densities, conductivity and neutron removal cross-sections across an energy range from 1 keV to 100 GeV. In addition to these analyses, the study explores kinetic energy stopping potentials and projected ranges of ions (H+, He+, and C+) through the Stopping and Range of Ions in Matter database. Furthermore, research evaluates the dose rate attenuation behaviour and trajectories of photons bombarded from 137Cs and 60Co sources using Particle and Heavy Ion Transport code System. Obtained results show that sample: 50P2O5-44BaO-6Eu2O3 with higher Eu3+-doped glass has a potential for radiation shielding application among selected samples and is comparable with previously recommended, tested polymer and glass samples.
Region represented | Asia |
---|---|
Paper preparation format | LaTeX |