19–24 May 2024
Music City Center
US/Central timezone

Characterization of FEL mirrors with long ROCs

SUPC036
19 May 2024, 14:00
4h
Country (MCC Exhibit Hall A)

Country

MCC Exhibit Hall A

201 Rep. John Lewis Way S, Nashville, TN 37203, USA
Student Poster Presentation MC2.A06 Free Electron Lasers Student Poster Session

Speaker

William Delooze (Duke University)

Description

FEL oscillators typically employ a two-mirror cavity with spherical mirrors. For storage ring FELs, a long, nearly concentric FEL cavity is utilized to achieve a reasonably small Rayleigh range, optimizing the FEL gain. A challenge for the Duke storage ring, with a 53.73 m long cavity, is the characterization of FEL mirrors with a long radius of curvature (ROC). The Duke FEL serves as the laser drive for the High Intensity Gamma-ray Source (HIGS). As we extend the energy coverage of the gamma-ray beam from 1 to 120 MeV, the FEL operation wavelength has expanded from infrared to VUV (1 micron to 170 nm). To optimize Compton gamma-ray production, the optimal value for the mirror's ROC needs to vary from 27.5 m to about 28.5 m. Measuring long mirror ROCs (> 10 m) with tight tolerances remains a challenge. We have developed two different techniques, one based on light diffraction and the other on geometric imaging, to measure the long ROCs. In this work, we present both techniques and compare their strengths and weaknesses when applied to measure mirror substrates with low reflectivity and FEL mirrors with high reflectivity.

Funding Agency

This work is partially supported by DOE Grant No. DE-FG02-97ER41033.

Region represented North America
Paper preparation format LaTeX

Primary author

William Delooze (Duke University)

Co-authors

Jun Yan (Duke University) Wei Li (Duke University) Ying Wu (Duke University)

Presentation materials

There are no materials yet.