19–24 May 2024
Music City Center
US/Central timezone

Study of the beam-beam interaction in an electron-positron collider with large Piwinski angle and crabbed waist

SUPG026
19 May 2024, 14:00
4h
Bluegrass (MCC Exhibit Hall A)

Bluegrass

MCC Exhibit Hall A

201 Rep. John Lewis Way S, Nashville, TN 37203, USA
Student Poster Presentation MC5.D10 Beam-Beam Effects Theory, Simulations, Measurements, Code Developments Student Poster Session

Speaker

Sangya Li (University of Science and Technology of China)

Description

To achieve very high luminosity, the next generation circular colliders adopt the crab waist collision scheme with a large Piwinski angle. In this scheme, beams collide with high current, low emittances, and small beta functions at the interaction point (IP). However, several effects arising from these extreme parameters, especially the coherent X-Z instability, will significantly impact the collider's performance, necessitating dynamic processing of longitudinal motion in a three-dimensional self-consistent treatment. The transverse vibration becomes coupled with the longitudinal motion, as well as the increase in horizontal beam size alters the interaction between beams and corresponding beam-induced effects. These instabilities limit the stable high luminosity area for the selected working point of the original design. Therefore, it is necessary to optimize the safe area of the working point by readjusting the parameters of the IP.In this paper, based on the Super Tau-Charm Facility (STCF) project in China, the instability caused by beam interactions is studied through numerical simulation. The relationship between the parameters at the IP and the stable selection area of the working point is systematically explored. The regularities found from simulations can assist future high luminosity electron-positron colliders in selecting the corresponding parameters. Additionally, some methods, such as adding adjustable devices to achieve stable high luminosity, are also proposed.

Region represented Asia

Primary author

Sangya Li (University of Science and Technology of China)

Co-author

Qing Luo (University of Science and Technology of China)

Presentation materials

There are no materials yet.