Speaker
Description
The experience gained at CERN by the R&D for LINAC4 has been exported to medical and societal applications. With an innovative design of the Radio Frequecy Quadrupole (RFQ) at high frequencies, it is possible to build very com- pact structures, reproducible in industry and with the po- tential of full portability. ELISA (Experimental LInac for Surface Analysis) is a linear proton accelerator installed in the Science Gateway exhibition at CERN since October 2023. With a footprint of only 2×1 square meters, ELISA consists of an ion source, a one-meter-long RFQ working at 750 MHz and an analysing line dedicated to Particle Induced X-ray Emission (PIXE). The system can accelerate a proton beam (extracted from the source at 20 keV) up to an energy of 2 MeV. In this paper the ELISA source commissioning is presented, with a multi-parameter optimization performed both computationally and experimentally and the ultimate optimization of beam emittance at 20 keV, finally achieving the required brilliance of the source. High energy beam com- missioning will also be discussed, including RFQ voltage scan to study the transmission and characterize the ELISA RFQ.
Region represented | Europe |
---|---|
Paper preparation format | LaTeX |