Speaker
Description
At Los Alamos National Laboratory (LANL), we developed a 1.6-cell C-band RF photoinjector for the Cathodes And Radiofrequency Interactions in Extremes (CARIE) project. The injector will be used to study the behavior of advanced photocathode materials under very high RF gradients. The photocathodes will be prepared with an INFN-style photocathode plug, compatible with the plugs used by other institutions. This presentation will report the RF design of the photoinjector with distributed coupling and RF field symmetrization. Beam physics simulations show that symmetrized RF fields in the vicinity of the beam axis are essential for minimizing the normalized emittances for a 250-pC electron bunch. We will also present the design for the photocathode insertion and the analysis of the challenges related to reducing the peak electric fields, multipactor suppression, and resonant frequency tuning by fine adjustment of the plug position.
Funding Agency
This research was funded by the U.S. Department of Energy through the Laboratory Directed Research and Development program of the Los Alamos National Laboratory, under project number 20230011DR.
Region represented | North America |
---|