Speaker
Description
The peak-detected Schottky system is a powerful diagnostic tool for observing the longitudinal beam parameters. According to the theoretical model, the peak value of the signal from a wide-band pick-up contains information on particle distribution as a function of the synchrotron frequency. Due to intrinsic assumptions needed for modelling the acquisition set-up and uncertainties in beam parameters, a one-to-one comparison of predictions and measurements remains a challenge. We obtained, for the first time, the peak-detected Schottky spectra in macro-particle simulations for a simplified experimental set-up. Following refinement of the theoretical model, a direct comparison was performed under controlled conditions. Agreement with the numerical results was improved by introducing an additional form factor describing the probability of a particle being present in the observation window. Modifications due to collective effects are briefly discussed as well.
Region represented | Europe |
---|---|
Paper preparation format | LaTeX |