Speaker
Description
Most FELs employ the mechanism of self-amplified spontaneous emission (SASE) from a relativistic electron beam to generate intense femtosecond pulses in the x-ray spectral region. Such SASE FELs are characterized by a broad bandwidth and relatively poor longitudinal coherence, and offer a rather limited control over the spectro-temporal properties. The limitations of a SASE FEL can be overcome by using an external laser to trigger the amplification process. Echo-enabled harmonic generation (EEHG), alone or in combination with the high-gain harmonic generation scheme (HGHG) is currently the most promising candidate to extend the operation of externally-seeded FELs into the soft x-ray region. Here, we discuss the plan at FERMI for the upgrade of the second FEL line in order to reach ~2 nm at the fundamental emission wavelength. In the first step, coherent radiation at ~10 nm will be generated with an EEHG layout and used as a seed in an HGHG stage on a fresh part of the electron beam. The experience with EEHG at the FEL-1 line will be an important step towards the final realization of the FERMI FEL as a reliable source of highly coherent radiation at ~2 nm and below.
Region represented | Europe |
---|---|
Paper preparation format | Word |