Speaker
Description
The paper introduces design and optimization of a high-repetition-rate infrared terahertz free-electron laser (IR-THz FEL) facility, which leverages optical resonator-based FEL technology to achieve a higher mean power output by increasing pulse frequency. Electron beam of the facility will be generated from a photocathode RF gun injector and further accelerated with a superconducting linear accelerator. Taking into account the collective effects, such as space charge, coherent synchrotron radiation (CSR), and longitudinal cavity wake field impacts, beam dynamics simulation for the injector, the accelerator, as well as the bunch compressor, has been done with codes of ASTRA and CSRTrack. With optimized microwave parameters of the linac, current profile with good symmetry has been obtained and the peak current can reach 100 A.
Region represented | Asia |
---|---|
Paper preparation format | Word |