Speaker
Description
We present a beam-focusing architecture using electro- and permanent magnets for a novel compact electron beam buncher under development for space-borne electron accelerators. Developing compact and efficient accelerator components has become desirable with renewed interest in using space-borne electron beams for ionospheric aurora research and very low frequency wave generation for particle removal from the magnetosphere. An electron gun injects a direct current electron beam, and the buncher modulates the DC beam into periodic bunches at a frequency of 5.7 GHz. A 5.7 GHz linear accelerator in the downstream will capture the bunched beam with minimal acceptance mismatch. The beam modulation is done by three radiofrequency pillbox cavities. The buncher uses the electrostatic potential depression (EPD) method to shorten the structure length remarkably. The electron gun and a tunable solenoid provide the initial focusing of the beam. We then use a series of permanent magnets surrounding the buncher cavities clamped together by ferromagnetic steel plates to focus the beam through the buncher. Permanent magnets do not consume any power and weigh less than solenoid magnets, which provide equivalent focusing, making them ideal for use on a satellite or sounding rocket. We use the three-dimensional (3D) particle tracking solver from CST Studio Suite to simulate the beam-focusing.
Funding Agency
This research was funded by the U.S. Department of Energy through the Laboratory Directed Research and Development program of the Los Alamos National Laboratory, under project number 20240136ER.
Footnotes
LA-UR-23-33372 Approved for public release; distribution is unlimited.
Region represented | North America |
---|