Speaker
Description
We propose and demonstrate a time-resolved, two-dimensional temperature monitoring technique for nanocrystalline diamond stripper foils exposed to high-intensity hydrogen ion (H-) beams at the Spallation Neutron Source (SNS) accumulator ring which is independent of foil emissivity. The technique utilizes a two-color imaging pyrometer in the shortwave infrared (SWIR) spectral band to measure thermal radiation from stripper foils located 40 meters away from the measurement site. This work presents a unique optical design, optical calibration of the system using a high-temperature blackbody source, preliminary temperature measurement results from two stripper foils (new and used) under various H‒ production beam conditions with average powers up to 1.7 MW and energy of 1.0 GeV. This technique can be utilized to understand the thermal behavior of charge strippers under high-intensity particle beams, providing crucial feedback to operations to control foil temperature and ensure foil lifetime.
Funding Agency
This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.
Region represented | North America |
---|---|
Paper preparation format | LaTeX |