Conveners
MC03.3 - Novel Particle Sources and Acceleration Techniques (Contributed)
- Carl Schroeder (Lawrence Berkeley National Laboratory)
An easy to install method for controlling electron injection in relativistic plasma waves relies on a sharp density downramp that is achieved by introducing a hydrodynamic shock into the gas flow before it gets ionized. Although the leading-order, desired effect of the shock is the generation of a 1D longitudinal drop in the density profile responsible for well localized electrons injection,...
Beam-driven plasma-wakefield acceleration is a promising avenue for future accelerators, where a high electric field gradient could reduce the size and cost of a high-energy physics or a photon-science facility. Successful experimental results in recent decades have demonstrated the feasibility of high-gradient acceleration in plasma. However, to meet the demands of current conventional...
Plasma based accelerators have achieved beams with multi-GeV energy, percent-level energy spread, micron emittance and stability over a full day however it remains a challenge to generate beams with all these properties simultaneously. External injection of a beam from a RF linac into a plasma-based accelerator holds the prospect of improving the beams from plasma accelerators by combining...