Speaker
Description
Integrating the advances made in photonics with efficient electron emitters can result in the development of next generation photocathodes for various accelerator applications.
In such photonics-integrated photocathodes, light can be directed using waveguides and other photonic components on the substrate underneath a thin (<100 nm) photoemissive film to generate electron emission from specific locations at sub-micron scales and at specific times at 100 femtosecond scales along with triggering novel photoemission mechanisms resulting in brighter electron beams and enabling unprecedented spatio-temporal shaping of the emitted electrons. In this work we have demonstrated photoemission confined in the transverse direction using a nanofabricated Si3N4 waveguide under a ∼20 nm thick cesium antimonide (Cs3Sb) photoemissive film. This work demonstrates a proof of principle feasibility of such photonics-integrated photocathodes and paves the way to integrate the advances in the field of photonics and nanofabrication with photocathodes to develop next-generation high-brightness electron sources for various accelerator applications.
Funding Agency
This work is supported by the NSF Center for Bright Beams under award PHY-1549132, and by the Department of Energy, Office of Science under awards DE-SC0021092, and DE-SC0021213.
I have read and accept the Privacy Policy Statement | Yes |
---|