7–12 May 2023
Venice, Italy
Europe/Zurich timezone

Demonstration of Beam Emittance Optimization using Reinforcement Learning

WEPA100
10 May 2023, 16:30
2h
Salone Adriatico

Salone Adriatico

Poster Presentation MC5.D13: Machine Learning Wednesday Poster Session

Speaker

Davide Marcato (Istituto Nazionale di Fisica Nucleare)

Description

In Particle accelerators, commissioning of a complex beam line requires extensive use of computer models. When the as-built beam line cannot be exactly modeled by the simulation (due for example to mechanical errors or to the extensive usage of the non-linear focusing forces), the solution found in the simulations needs to be adjusted. Thus, it is often required to modify the settings by exploring different parameters ranges on the real accelerator. Given the high parameter space, this is a demanding task both in term of beam time and in term of required expertise. Furthermore, there is no guarantee to reach the optimal solution. This paper proposes a Reinforcement Learning approach to develop a model able to efficiently explore the parameter space of a beam line and iteratively move towards the optimal solution. The approach is first applied for the ADIGE Medium Resolution Mass Separator (MRMS) at INFN Legnaro National Laboratories (LNL), where the potentials of an electrostatic multipole must be correctly tuned to minimize the output beam emittance after the separation stage.

I have read and accept the Privacy Policy Statement Yes

Primary author

Davide Marcato (Istituto Nazionale di Fisica Nucleare)

Co-authors

Luca Bellan (Istituto Nazionale di Fisica Nucleare) Damiano Bortolato (Istituto Nazionale di Fisica Nucleare) Michele Comunian (Istituto Nazionale di Fisica Nucleare) Alessio Galatà (Istituto Nazionale di Fisica Nucleare) Fabio Gelain (Istituto Nazionale di Fisica Nucleare) Valentina Martinelli (Istituto Nazionale di Fisica Nucleare) Giovanni Savarese (Istituto Nazionale di Fisica Nucleare) Gian Antonio Susto (Univ. degli Studi di Padova)

Presentation materials

There are no materials yet.