Speaker
Description
Shaping ultraviolet (UV) laser beams is critical for optimizing photoinjector performance for applications in free-electron lasers (FELs). It has been shown that a 50% truncated Gaussian beam can achieve the lowest emittance via space charge compensation at LCLS-I. However, conventional shaping techniques to prepare this beam are limited by significant power losses or are not adapted for UV light. Here we report a high-precision transverse-shaping technique based on custom fused-silica phase plates with >99 % transmission at 253 nm. This approach enables spatial beam profile tailoring and significantly enhances beam stability at the photocathode. Using IMPACT-T simulations, we predict a 33% (from 0.67um to 0.45um) reduction in normalized emittance for a 250 pC bunch at LCLS-I. Experimental implementation at FACET-II demonstrated a 37% emittance reduction (from 5.4um to 3.4um) at 1.6 nC. These results establish phase-plate beam shaping as a high-fidelity, low-loss approach for high-brightness photoinjectors. Implementation at LCLS-II which will enable stable operation at megahertz repetition rates is underway.
I have read and accept the Privacy Policy Statement | Yes |
---|---|
Please consider my poster for contributed oral presentation | No |
Would you like to submit this poster in student poster session on Sunday (August 10th) | No |