Speaker
Description
Plasma processing of superconducting radio frequency (SRF) cavities has been an active research effort at Jefferson Lab (JLab) since 2019, aimed at enhancing cavity performance by removing hydrocarbon contaminants and reducing field emission. In this experiment, processing using argon-oxygen and helium-oxygen gas mixtures to find minimum ignition power at different cavity pressure was investigated. Ongoing simulations are contributing to a better understanding of the plasma surface interactions and the fundamental physics behind the process. These simulations, combined with experimental studies, guide the optimization of key parameters such as gas type, RF power, and pressure to ignite plasma using selected higher-order mode (HOM) frequencies. This paper presents experimental data from argon-oxygen and helium-oxygen gas mixture C75 and C100 cavity plasma ignition studies, as well as simulation results for the C100-type cavity based on the COMSOL model previously applied to the C75 cavity.
I have read and accept the Privacy Policy Statement | Yes |
---|---|
Please consider my poster for contributed oral presentation | No |
Would you like to submit this poster in student poster session on Sunday (August 10th) | No |