New materials beyond the standard bulk niobium have the potential to greatly improve the performance of Superconducting Radio Frequency (SRF) cavities. Specifically, thin coatings of normal conductors such as gold have the potential to improve the key RF performance metric of quality factor. We present progress on depositing thin gold layers onto 2.6 GHz SRF cavities and testing their RF performance.
The linear accelerator at the Facility for Rare Isotope Beams (FRIB) at Michigan State University uses a thin liquid Lithium film for charge stripping of high-intensity heavy ion beams. Energy straggling of the beam in the non-uniform Lithium film affects the energy distribution in the beam. This can lead to non-linear “tails” in the longitudinal phase-space beam distribution after bunching at...
The world’s first 1.3 GHz cryomodule containing eight 9-cell superconducting radio-frequency (RF) cavities treated by medium-temperature furnace baking (mid-T bake) was developed, assembled and tested at the Institute of High Energy Physics (IHEP), Chinese Academy of Sciences for the Dalian Advanced Light Source (DALS). The 9-cell cavities in the cryomodule achieved an unprecedented high...
Neutron scattering is an indispensable technique in material science research for providing solutions to important engineering challenges, including the ever-growing demand for more efficient batteries and fuel-cells. There are, however, limitations in the access and availability to the necessary neutron beams and this is worsening as nuclear research reactors continue to shut down. As a...
The Fermilab linac injection line consists of a 35 keV magnetron-type H- ion source, two-solenoid Low Energy Beam Transport (LEBT), 201 MHz 4-rod 750 keV Radio Frequency Quadrupole (RFQ), and a Medium Energy Transport (MEBT) containing 4 quadrupoles and a bunching cavity. The injector delivers 25 mA, 48 µs pulses to drift-tube linac at a repetition rate of 15Hz. The transmission efficiency has...
A Dielectric Disk Accelerator (DDA) is a metallic accelerating structure loaded with dielectric disks to increase coupling between cells, thus high group velocity, while still maintaining a high shunt impedance. This is crucial for achieving high efficiency high gradient acceleration in the short rf pulse acceleration regime. Research of these structures has produced traveling wave structures...
The Los Alamos Neutron Science Center (LANSCE) accelerator complex delivers both protons (p) and negative hydrogen ions (H-) and provides various beam patterns simultaneously to multiple users. The LANSCE linac front end is still based on Cockcroft-Walton voltage generators that bring proton and H- beams to 750 keV. An upgrade of the front end to a modern, RFQ-based version is now under...
The Cornell High Pulsed Power Sample Host Cavity (CHPPSHC) is a new system designed to measure the superheating field of candidate superconducting RF (SRF) materials, giving insight into their operational limits. This system is designed to reach peak magnetic fields of up to 0.5 T in only a few microseconds, allowing us to achieve a pure magnetic field quench on the sample. We present an...
The proposed novel 100 MeV injector for the LANSCE Accelerator Facility* is designed to replace the existing 750-keV Cockcroft-Walton-columns-based injector. The new Front End includes two independent low-energy transports for H+ and H- beams merging at the entrance of a single RFQ, with the subsequent acceleration of particles in the new Drift Tube Linac. The challenge of the design is...
Superconducting technology has significantly advanced the capabilities of particle accelerators, facilitating higher beam-power operations for fundamental research at a comparatively lower cost. However, the conventional implementation of superconducting technology introduces complexities in the form of cryogenic plants, cryogenic distribution systems and substantial construction and...
RadiaSoft is developing machine learning methods to improve the operation and control of industrial accelerators. Because industrial systems typically suffer from a lack of instrumentation and a noisier environment, advancements in control methods are critical for optimizing their performance. In particular, our recent work has focused on the development of pulse-to-pulse feedback algorithms...