25–30 Aug 2024
Hilton Chicago
America/Chicago timezone

Efficient 6-dimensional phase space reconstructions from experimental measurements using generative machine learning

THPB065
29 Aug 2024, 16:00
2h
Boulevard (Hilton Chicago)

Boulevard

Hilton Chicago

720 South Michigan Ave Chicago, IL 60605 USA
Poster Presentation MC4.1 Beam diagnostics Thursday Poster Session

Speaker

Ryan Roussel (SLAC National Accelerator Laboratory)

Description

Next-generation accelerator concepts, which hinge on the precise shaping of beam distributions, demand equally precise diagnostic methods capable of reconstructing beam distributions within 6-dimensional position-momentum spaces. However, the characterization of intricate features within 6-dimensional beam distributions using current diagnostic techniques necessitates a substantial number of measurements, using many hours of valuable beam time. Novel phase space reconstruction techniques are needed to reduce the number of measurements required to reconstruct detailed, high-dimensional beam features in order to resolve complex beam phenomena, and as feedback in precision beam shaping applications. In this study, we present a novel approach to reconstructing detailed 6-dimensional phase space distributions from experimental measurements using generative machine learning and differentiable beam dynamics simulations. We demonstrate that this approach can be used to resolve 6-dimensional phase space distributions from scratch, using basic beam manipulations and as few as 20 2-dimensional measurements of the beam profile. We also demonstrate an application of the reconstruction method in an experimental setting at the Argonne Wakefield Accelerator, where it is able to reconstruct the beam distribution and accurately predict previously unseen measurements 75x faster than previous methods.

Funding Agency

This work is supported by the U.S. Department of Energy, Office of Science under Contract No. DE-AC02-76SF00515 and the Center for Bright Beams, NSF award PHY-1549132.

Author

Ryan Roussel (SLAC National Accelerator Laboratory)

Co-authors

Auralee Edelen (SLAC National Accelerator Laboratory) Juan Pablo Gonzalez-Aguilera (University of Chicago) Young-Kee Kim (University of Chicago) Eric Wisniewski (Illinois Institute of Technology) Alexander Ody (Argonne National Laboratory) Wanming Liu (Argonne National Laboratory) John Power (Argonne National Laboratory)

Presentation materials

There are no materials yet.