Speaker
Description
In 2019, the annual number of cancer cases exceeded 100 million, resulting in 10 million deaths worldwide. Radiation therapy stands out as one of the most effective methods for cancer treatment. Electron beams in the 100-MeV range can reach even deep-seated tumors without the need for surgical intervention. Thanks to novel high-gradient acceleration technologies, clinical facilities for high-energy electron-based irradiation are actively under development. However, the online dosimetry of the delivered dose remains a challenge. In this work, we present a simple and effective solution. We demonstrate that thin YAG screen(s) permanently integrated into the layout of the beamline can be used to characterize the transverse beam distribution shot-to-shot during irradiation. When combined with a beam charge monitor(s), it allows for the prediction of the dose delivered to the target. We benchmark this method using the standard dosimetry routine based on the irradiation of radiochromic films calibrated with an ion chamber.