Speaker
Description
X-ray free-electron lasers (FELs) rely on SASE due to the lack of seed lasers and the difficulty in obtaining mirrors. Progress in diamond crystal Bragg mirrors enables the design of x-ray FEL oscillators. Regenerative amplifiers (RAFELs) are high gain/low-Q oscillators that out-couple most of the optical power. An x-ray RAFEL based on the LCLS-II at SLAC using a six-mirror resonator out-coupling 90% or more through a pinhole in the first downstream mirror is analyzed using the MINERVA and OPC to model the optical field within the undulator and the remainder of the resonator respectively.1 Results show substantial powers at the fundamental (3.05 keV) and 3rd harmonic (9.15 keV).
- H.P. Freund, P.J.M. van der Slot, and Yu. Shvyd’ko, “An X-Ray Regenerative Amplifier Free-Electron Laser Using Diamond Pinhole Mirrors,” New J. Phys. 21, 093028 (2019).
*This research was supported under DOE Contract DE-SC0018539. Work at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357. We also thank the University of New Mexico Center for Advanced Research Computing, supported in part by the National Science Foundation, for providing high performance computing resources used for this work.
I have read and accept the Privacy Policy Statement | Yes |
---|