

22ND INTERNATIONAL CONFERENCE ON RF SUPERCONDUCTIVITY

September 21-26, 2025

Contribution ID: 104 Contribution code: TUP18

Type: Poster Presentation

Detailed surface morphological studies of Nb₃Sn treated by controllable bipolar pulsed electropolishing

Tuesday 23 September 2025 14:30 (3 hours)

Post-coating surface treatment is a crucial approach for eliminating surface flaws and enhancing the RF performance of Nb₃Sn. The bipolar pulsed electropolishing (BPEP) technique, originally developed for Nb, is adaptable to Nb₃Sn and offers precise, controllable surface removal at slow rates—an essential feature for this application. In BPEP, the net removal rate is proportional to the repetition frequency and can be controlled with nanometer-scale precision, down to a few angstroms per pulse. The BPEP process enables highly controlled surface finishing by engineering the anodic/cathodic potential and pulse duration. Adjusting these parameters in response to surface morphology changes can further optimize the process. Our systematic BPEP morphology studies on Nb samples demonstrate that removal rate and uniformity can be finely tuned. The advantages of BPEP for Nb₃Sn extend beyond Sn vapor-diffusion deposited Nb₃Sn/Nb cavities; it is a versatile technique applicable to any Nb₃Sn-coated SRF cavity, offering a promising path for improving surface quality and RF performance.

I have read and accept the Privacy Policy Statement

Yes

Footnotes

Funding Agency

Author: Dr GE, Mingqi (Thomas Jefferson National Accelerator Facility)
Co-author: TIAN, Hui (Thomas Jefferson National Accelerator Facility)
Presenter: Dr GE, Mingqi (Thomas Jefferson National Accelerator Facility)

Session Classification: Tuesday Poster Session

Track Classification: MC2: Fundamental SRF research and development