MEDSI2025 - 13th International Conference on Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation

Contribution ID: 240 Contribution code: THP35

Type: Poster Presentation

High-stability double multilayer monochromator with gravity-driven water cooling for the SDB beamline at HEPS

Thursday 18 September 2025 16:40 (1 hour)

Multilayer monochromators are commonly employed in photon hungry synchrotron beamlines to deliver intense, monochromatic X-ray beams. We present the design, validation, and beamline integration of a high-stability, high energy (20-70keV) double multilayer monochromator developed for the Structural Dynamics Beamline (SDB) at HEPS. The system features a novel flexure-based architecture, optimized via finite element analysis (FEA), to significantly enhance stiffness, particularly in the roll direction of the Bragg axis. A monolithic flexure mechanism is employed for pitch and gap adjustment of the second multilayer, improving mechanical integrity and stability. A special gravity-driven water cooling system, coupled with a unique indium-gallium interface for clamping and thermal contact, was developed to suppress vibrational disturbances. FEA simulations and experimental validation confirmed a clamping-induced deformation below 69 nrad RMS. A vibration level as low as 5 nrad under cooling was measured by laser interferometry. The system has been successfully installed and tested with synchrotron beam, meeting requirements of the beamline.

Footnotes

Funding Agency

National Development and Reform Commission (NDRC)

Author: LIANG, Hao (Institute of High Energy Physics)

Co-authors: Ms LU, Yuanshu (Institute of High Energy Physics, Chinese Academy of Sciences); YANG, Yang (Institute of High Energy Physics, Chinese Academy of Sciences); ZHANG, Yunsheng (Institute of High Energy Physics, Chinese Academy of Sciences); ZHANG, Lu (Chinese Academy of Sciences); Dr ZHANG, Bingbing (Institute of High Energy Physics, Chinese Academy of Sciences); Mr ZHANG, Changrui (Institute of High Energy Physics, Chinese Academy of Sciences); Dr YUE, Shuaipeng (Institute of High Energy Physics, Chinese Academy of Sciences); Dr HONG, Zhen (Institute of High Energy Physics, Chinese Academy of Sciences); SUN, Zheng (Institute of High Energy Physics); LI, Ming (Institute of High Energy Physics, Chinese Academy of Sciences); SHENG, Weifan (Institute of High Energy Physics, Chinese Academy of Sciences); SHENG, Weifan (Institute of High Energy Physics, Chinese Academy of Sciences); SHENG, Weifan (Institute of High Energy Physics, Chinese Academy of Sciences); SHENG, Weifan (Institute of High Energy Physics, Chinese Academy of Sciences); SHENG, Weifan (Institute of High Energy Physics, Chinese Academy of Sciences); SHENG, Weifan (Institute of High Energy Physics, Chinese Academy of Sciences); SHENG, Weifan (Institute of High Energy Physics, Chinese Academy of Sciences); SHENG, Weifan (Institute of High Energy Physics, Chinese Academy of Sciences); SHENG, Weifan (Institute of High Energy Physics, Chinese Academy of Sciences); SHENG, Weifan (Institute of High Energy Physics, Chinese Academy of Sciences); SHENG, Weifan (Institute of High Energy Physics, Chinese Academy of Sciences); SHENG, Weifan (Institute of High Energy Physics, Chinese Academy of Sciences); SHENG, Weifan (Institute of High Energy Physics, Chinese Academy of Sciences); SHENG, Weifan (Institute of High Energy Physics, Chinese Academy of Sciences); SHENG, Weifan (Institute of High Energy Physics, Chinese Academy of Sciences); SHENG, Weifan (Institute of High Energy Physics, Chinese Academy of Sciences); SHENG, Weifan (Institute of High Energy

Presenter: LIANG, Hao (Institute of High Energy Physics)

Session Classification: Thursday Poster Session

Track Classification: PRECISION MECHANICS: Stability Issues