

Contribution ID: 549 Contribution code: **WEPD030**

Type: **Poster Presentation**

Performance and reliability improvement of a Python-based EPICS IOC by switching to pyDevSup

Wednesday, 24 September 2025 16:30 (1h 30m)

The power supplies used for FOFB correctors at SIRIUS expose only electrical current values, making it necessary to perform conversions to and from beam kick values. To take advantage of the canonical Python implementation of this conversion, a separate IOC was developed using pyEPICS and PCASPy. This technology stack imposed some limitations, making it necessary to limit the update rate, and, even then, requiring one independent instance of the IOC per ring sector (20 in total) to avoid PV timeouts and disconnects; disconnection events when one of the power supplies was down also had cascading issues with reconnection and memory corruption.

This motivated us to pursue more modern alternatives for integrating Python code into an IOC, specifically one that could take advantage of the Channel Access (CA) integration already present in EPICS databases, avoiding any of the bridges between CA and Python. We evaluated the pythonSoftIOC project and the py-Device and pyDevSup support modules, which we present in this work. We settled on pyDevSup due to the development experience it provided.

This work also presents benchmarks comparing the performance gains with the new IOC and aims to explore the architecture differences that enabled them.

Funding Agency

Footnotes

Author: DE SOUZA DOS REIS, Gustavo (Brazilian Synchrotron Light Laboratory)

Co-authors: DE SOUZA OLIVEIRA, Ana Clara (Brazilian Center for Research in Energy and Materials); NOGUEIRA ROLIM, Érico (Brazilian Synchrotron Light Laboratory)

Presenter: NOGUEIRA ROLIM, Érico (Brazilian Synchrotron Light Laboratory)

Session Classification: WEPD Posters

Track Classification: MC10: Software Architecture & Technology Evolution