HB2025 - the 71st ICFA Advanced Beam Dynamics workshop on High-Intensity and High-Brightness Hadron Beams

Contribution ID: 61 Contribution code: TUIBC01 Type: Invited Oral Presentation

A Novel Linac Simulation Code AVAS

Tuesday, October 21, 2025 11:00 AM (30 minutes)

Advanced Virtual Accelerator Software is a high-performance simulation tool for modeling beam transport processes in high-intensity linear accelerators. AVAS has multiple functions, including multi-particle tracking, engineering analysis, multi-beam transport, and preset accelerator operational parameters. Algorithmically, the Particle-in-Cell algorithm has been modified based on symmetry principles, accelerating space charge field calculations by a factor of four while maintaining simulation accuracy. In addition, AVAS uses a combined particle motion mode that adaptively switches between time and position as independent variables based on element type, effectively balancing numerical simulation accuracy and computational speed. Performance-wise, AVAS has developed an ultra-high-speed GPU version achieving three orders of magnitude speed enhancement in large-scale multi-particle simulations. Furthermore, a cloud computing simulation platform has been deployed on the computing cluster. This platform features an intuitive graphical user interface and efficient data post-processing capabilities, significantly improving computational performance and user experience.

Footnotes

Funding Agency

I have read and accept the Privacy Policy Statement

Yes

Authors: JIN, Chao (Institute of Modern Physics, Chinese Academy of Sciences); HE, Yuan (Institute of Modern Physics, Chinese Academy of Sciences); WANG, Zhijun (Institute of Modern Physics, Chinese Academy of Sciences); Dr QI, Xin (Institute of Modern Physics); Mr LI, Zhongyi (Institute of Modern Physics); Dr TIAN, Yuan (Institute of Modern Physics)

Presenter: JIN, Chao (Institute of Modern Physics, Chinese Academy of Sciences)

Session Classification: TUIBC WGB invited oral

Track Classification: WGB:Beam Dynamics in Linacs