HB2025 - the 71st ICFA Advanced Beam Dynamics workshop on High-Intensity and High-Brightness Hadron Beams

Contribution ID: 129 Contribution code: THFA13 Type: Flash Poster Presentation

Design of the BLM electronics for the CSNS Superconducting LINAC

Thursday, October 23, 2025 2:55 PM (5 minutes)

CSNS-II superconducting Section Beam Loss Measurement Electronic Design

The CSNS-II linear accelerator upgrade will adopt superconducting accelerator structures, with the beamline enclosed in low-temperature modules. Detection of beam loss can only be done on the outer surface of the low-temperature modules. The CSNS-II accelerator plans to use a parallel plate multi-electrode ionization chamber as the beam loss monitor (BLM) probe for the superconducting section. The electronic system of the beam loss measurement (BLM) is primarily used for signal conditioning, digitization (ADC), transmission storage as EPICS PV quantities, and providing interlock signals for machine protection based on the output signals from the BLM probes. The main tasks of the development of the beam loss measurement (BLM) electronic system include: signal conditioning of weak current output from the BLM probes in the analog circuit section; and analog-to-digital conversion, digital signal processing, storage, PV quantity publication in the digital circuit section for the front-end analog output signals.

Footnotes

Funding Agency

I have read and accept the Privacy Policy Statement

Yes

Author: ZENG, Lei (Institute of High Energy Physics)

Co-authors: LI, Fang (Institute of High Energy Physics); YANG, Renjun (Institute of High Energy Physics); QIU, Ruiyang (Institute of High Energy Physics); HUANG, Weiling (Institute of High Energy Physics); XU, Zhihong (Institute of High Energy Physics); LU, Zhijun (Institute of High Energy Physics)

Presenter: ZENG, Lei (Institute of High Energy Physics)

Session Classification: THFA WGs flash talks

Track Classification: WGE: Beam Instrumentation, beam Interaction and AI technology