HB2025 - the 71st ICFA Advanced Beam Dynamics workshop on High-Intensity and High-Brightness Hadron Beams

Contribution ID: 91 Contribution code: THFA12 Type: Flash Poster Presentation

Longitudinal Phase Space Reconstruction from Beam Current Projections Using Deep Convolutional Neural Networks

Thursday, October 23, 2025 2:55 PM (5 minutes)

We propose an end-to-end deep learning method for reconstruction of proton synchrotron longitudinal phase space distributions from 1D beam current projections. Unlike iterative tomographic approaches, our model bypasses complex physics computations by establishing a direct sequence-to-image mapping. The architecture integrates sinusoidal positional encoding to capture multi-turn temporal dependencies and attention pooling to weight critical frames. Spatial reconstruction uses convolutional upsampling. Trained on 10,000 simulated datasets generated with XiPAF parameters, the model achieves high-fidelity results with average KL divergence <0.1 and SSIM >0.7 on validation data. Compared to Algebraic Reconstruction Technique (ART), our method maintains equivalent projection discrepancy (<0.04) while reducing reconstruction time from ~3 minutes to ~100 ms per image –a 3-order-of-magnitude acceleration. Current 128×128 pixel resolution limitations will be addressed in future work. This framework enables real-time beam diagnostics for high-intensity hadron accelerators.

Footnotes

*Simulation parameters: $E_s=10$ MeV, L=30.9 m, $V_rf=100$ V, h=1, $\gamma_T=1.64468$

Funding Agency

I have read and accept the Privacy Policy Statement

Yes

Author: LUO, Yixuan (Tsinghua University)

Co-authors: Dr YAO, Hongjuan (Tsinghua University); XIONG, Yang (Tsinghua University); Mr FANG, Peizhi (Tsinghua University); Mr HUANG, Yihao (Tsinghua University); 李, 楚豪 (Tsinghua University); ZHENG, Shu-xin (Tsinghua University)

Presenter: LUO, Yixuan (Tsinghua University)
Session Classification: THFA WGs flash talks