HB2025 - the 71st ICFA Advanced Beam Dynamics workshop on High-Intensity and High-Brightness Hadron Beams

Contribution ID: 160 Contribution code: THPT54

Type: Poster Presentation

Research on Optimization of Beam Fault Compensation in CiADS Superconducting Section Based on Reinforcement Learning

Thursday, October 23, 2025 5:10 PM (20 minutes)

High reliability is a major challenge of high-current linear accelerators. This is particularly problematic for Accelerator Driven Systems (ADS) such as the China initiative Accelerator Driven System (CiADS). In order to achieve rapid beam recovery, it is necessary to adjust and compensate the superconducting solenoids and cavities adjacent to the failed components in superconducting linear accelerators. In this study, we employ the Soft Actor-Critic (SAC) algorithm, a reinforcement learning technique, to train a compensation model within a simulated environment of the CiADS superconducting section. Compared to previous methods utilizing genetic algorithms, the reinforcement learning approach demonstrates superior performance in delivering more stable and consistent results for beam dynamics control.

Footnotes

Funding Agency

I have read and accept the Privacy Policy Statement

Yes

Authors: WANG, Tielong (Institute of Modern Physics, Chinese Academy of Sciences); WANG, Zhijun (Institute of Modern Physics, Chinese Academy of Sciences); Mrs LIU, Shuhui (Institute of Modern Physics); SU, Chunguang (Institute of Modern Physics, Chinese Academy of Sciences); YI, Man (Lanzhou University); JIA, Duanyang (Institute of Modern Physics, Chinese Academy of Sciences); DU, Yu (Institute of Modern Physics, Chinese Academy of Sciences); CHU, Yimeng (Institute of Modern Physics, Chinese Academy of Sciences); Mr ZHANG, Tao (Institute of Modern Physics)

Presenter: WANG, Tielong (Institute of Modern Physics, Chinese Academy of Sciences)

Session Classification: THPT poster session

Track Classification: WGB:Beam Dynamics in Linacs