

Contribution ID: 2396 Contribution code: SUPM068

Type: Student Poster Presentation

Improvement of electron beam properties for Few-TW LWFA conducted in a sub-mm gas cell filled with a helium-nitrogen mixture

Sunday 1 June 2025 14:00 (2 hours)

Developing a laser wakefield acceleration (LWFA) scheme by focusing few-TW laser pulses into a thin, dense gas target paves the way for generating high-average-current electron beams driven by a modern high-repetition-rate laser. Our previous study demonstrated that using a sub-mm nitrogen (N_2) gas cell facilitates the routine generation of 10-MeV-scale electron beams from few-TW LWFA with ionization-induced injection. However, excessive ionization-induced defocusing of the pump laser pulse tends to occur in an N_2 target, motivating the use of a helium (He) –nitrogen (N_2) mixture as the gas target to mitigate pump pulse defocusing in few-TW LWFA*. In this study, the effect of nitrogen doping ratio ranging from 0.5% to 5% was investigated using 40-fs, 1-TW pulses with a 0.4-mm-long gas cell. We found that a manifest peak repeatedly appears around 10 MeV in the energy spectra with the 99.5% He - 0.5% N_2 gas mixture - a result never observed with the pure N_2 cell. Using the He- N_2 mixture also leads to a noticeable increase in the charge of high-energy electrons (>5 MeV) and a reduction in the pointing fluctuation of the output beams compared to the pure N_2 target.

Footnotes

P. -W. Lai et al., Phys. Plasmas, 30, 010703 (2023).*M. -W. Lin et al., Phys. Plasmas, 27, 013102 (2020).

Paper preparation format

LaTeX

Region represented

Asia

Funding Agency

This work was supported by the National Science and Technology Council in Taiwan with Grant No. NSTC 113-2112-M-007-013 and NSTC 113-NU-E-007-006-NU.

Author: LAI, Po Wei (National Tsing Hua University)

Co-authors: HUANG, Chen-Kang (National Central University); PAI, Chih-Hao (National Central University); CHU, Hsu-hsin (National Central University); TRAN, Khoa (National Tsing Hua University); LIN, Ming-Wei (National Tsing Hua University); CHEN, Shih-Hung (National Central University); LIU, Yao-Li (National Central University)

Presenter: LAI, Po Wei (National Tsing Hua University)

Session Classification: Student Poster

Track Classification: MC3: Novel Particle Sources and Acceleration Techniques: MC3.T25 Lasers