### IPAC'25 - the 16th International Particle Accelerator Conference



Contribution ID: 2318 Contribution code: SUPM040

**Type: Student Poster Presentation** 

# Design study for transverse deflecting cavity-based de-chirper

Sunday 1 June 2025 14:00 (2 hours)

A collaboration is underway to experimentally demonstrate a novel approach using deflecting cavities to control a particle beam's longitudinal chirp. While a series of deflecting cavities produces negative chirp, the de-chirping process requires additional modification on the beamline. It has been known that inserting negative drift sections between TDCs enables de-chirping. While the original idea of negative drift requires a series of five quadrupole magnets, the experimental conditions cannot provide enough quadrupoles and space for them. Additionally, it is confirmed that a negative drift using three quadrupoles introduces a significant increase in beam size and emittance in one of the transverse planes. Thus, we propose a new method to enable de-chirping by inserting a series of three quadrupoles. Here, we form a negative identity transport instead of the negative drift. Simulations have been performed to explore this new opportunity. We present the result of this design study.

#### **Footnotes**

### Paper preparation format

## Region represented

America

### **Funding Agency**

Author: DESIMONE, Alex (Northern Illinois University)

**Co-authors:** WISNIEWSKI, Eric (Illinois Institute of Technology); HA, Gwanghui (Northern Illinois University); XU, Haoran (Los Alamos National Laboratory); POWER, John (Argonne National Laboratory); YAMPOL-SKY, Nikolai (Los Alamos National Laboratory); MARKSTEINER, Quinn (Los Alamos National Laboratory); DO-RAN, Scott (Argonne National Laboratory); LIU, Wanming (Argonne National Laboratory)

**Presenter:** DESIMONE, Alex (Northern Illinois University)

Session Classification: Student Poster

**Track Classification:** MC2: Photon Sources and Electron Accelerators: MC2.A08 Linear Accelerators