IPAC'25 - the 16th International Particle Accelerator Conferece

Contribution ID: 1463 Contribution code: WEPB033

Type: Poster Presentation

Progress on the design of solenoids for the 6D cooling channel of a muon collider

Wednesday 4 June 2025 16:00 (2 hours)

In the current and most evolved design concept of a muon collider, there exists two long (~1 km) channels for cooling newly created muons and anti-muons. Termed the '6D cooling channels', the beam is cooled in momentum and position space using a series of alternating polarity solenoids, which create an oscillating field in the beam direction, absorbers and radio-frequency cavities. In total there are around 3000 solenoids per channel, contributing to a significant portion of the cost and engineering demands of the entire machine. The integration of the requirements of the field profile with feasible solenoid configurations is a difficult and unique problem, without analytic descriptions to readily relate these. Our approach addresses this problem in two steps: in the first we constrain the beam optics optimization studies by setting engineering limits on solenoid parameters; in the second we have developed a numerical optimization routine to find the best configuration given a desired field profile, in terms of cost and engineering complexity. The following paper reviews this approach and key features, and presents optimization results on the latest optics solution.

Footnotes

Paper preparation format

LaTeX

Region represented

Europe

Funding Agency

Funded by the European Union (EU).

Author: FABBRI, Siara (CERN)

Co-authors: BOTTURA, Luca (European Organization for Nuclear Research); STATERA, Marco (Istituto Nazionale di Fisica Nucleare)

Presenter: FABBRI, Siara (CERN)

Session Classification: Wednesday Poster Session

Track Classification: MC7: Accelerator Technology and Sustainability: MC7.T10 Superconducting Magnets