Speaker
Description
We have developed a new SLED-type RF pulse compressor for powering ultra-high gradient X-band photoinjectors with pulse lengths shorter than 10 ns. Klystrons capable of generating these short pulses at multi-MW levels are non-existent. However, RF pulse compression is an alternative technique used to increase klystron output peak power at the cost of pulse length. Over the years, we have developed numerous pulse compression systems, including super-compact SLEDs for X-band transverse deflectors at SLAC’s LCLS and LCLS-II. Our new compact pulse compressor uses spherical cavities with axially-symmetric TE modes which have no electric field on the cavity surface. This allows our new SLED to potentially achieve higher peak RF power compared to the LCLS-II SLEDs. We present the design of this SLED composed of two spherical cavities and a waveguide hybrid with TE01 circular waveguide ports. During high power test this SLED produced peak RF power up to 317 MW.
Funding Agency
This work is supported by U.S. Department of Energy Contract No. DE-AC02-76SF00515.
Region represented | America |
---|---|
Paper preparation format | LaTeX |