IPAC'25 - the 16th International Particle Accelerator Conferece

Contribution ID: 2144 Contribution code: TUPB057

Type: Poster Presentation

Ultra-high spatial resolution in micron scale achieved by a practical cascade high-energy electron radiography in HERPL

Tuesday 3 June 2025 16:00 (2 hours)

As a new scheme, High Energy Electron Radiography (HEER) was considered as one of the novel mesoscale diagnostic methods for high energy density matter (HEDM) because of powerful penetration, high space-time resolution and large density dynamic diagnosis range. In this work, we R&D a practicle cascade HEER composed of a electromagnetic beamline and a permanent magnet HEER in High Energy Electron Radiography Research Platform in Lanzhou (HERPL). The field of view of the cascade HEER is about Φ 3mm, and its total length is half that of the electromagnetic HEER with the same magnification. 50 MeV electron beams with picosecond pulse width bunch were used to image a TEM grid to study the spatial resolution. The excellent result was obtained with spatial resolution about 0.6 μ m. In addition, electron bunch train and ultra-fast imaging acquisition system prepared for dynamic HEER were studied in this paper.

Footnotes

Paper preparation format

Word

Region represented

Asia

Funding Agency

National Key Research and Development Program of China (Grant No. 2019YFA0404902),Scientific Research Instrument and Equipment Development Program of Chinese Academy of Sciences (No. GJJSTD20210007)

Author: CAO, Shuchun (Institute of Modern Physics, Chinese Academy of Sciences)

Co-authors: ZHAO, Quantang (Institute of Modern Physics, Chinese Academy of Sciences); YAN, Wenbing (Institute of Modern Physics, Chinese Academy of Sciences); SHEN, Xiaokang (Institute of Modern Physics, Chinese Academy of Sciences); ZONG, Yang (Institute of Modern Physics, Chinese Academy of Sciences); ZHOU, Youwei (Institute of Modern Physics, Chinese Academy of Sciences); RAN, Zhaohui (Institute of Modern Physics, Chinese Academy of Sciences); LI, Zhongping (Institute of Modern Physics, Chinese Academy of Sciences); ZHANG, Zimin (Institute of Modern Physics, Chinese Academy of Sciences); Chinese Academy of Sciences); ZHANG, Zimin (Institute of Modern Physics, Chinese Academy of Sciences); Chinese Academy of Sciences); ZHANG, Zimin (Institute of Modern Physics, Chinese Academy of Sciences); ZHANG, Zimin (Institute of Modern Physics, Chinese Academy of Sciences); ZHANG, Zimin (Institute of Modern Physics, Chinese Academy of Sciences); ZHANG, Zimin (Institute of Modern Physics, Chinese Academy of Sciences); ZHANG, Zimin (Institute of Modern Physics, Chinese Academy of Sciences); ZHANG, Zimin (Institute of Modern Physics, Chinese Academy of Sciences); ZHANG, Zimin (Institute of Modern Physics, Chinese Academy of Sciences); ZHANG, Zimin (Institute of Modern Physics, Chinese Academy of Sciences); ZHANG, Zimin (Institute of Modern Physics, Chinese Academy of Sciences); ZHANG, Zimin (Institute of Modern Physics, Chinese Academy of Sciences); ZHANG, Zimin (Institute of Modern Physics, Chinese Academy of Sciences); ZHANG, Zimin (Institute of Modern Physics, Chinese Academy of Sciences); ZHANG, Zimin (Institute of Modern Physics, Chinese Academy of Sciences); ZHANG, Zimin (Institute of Modern Physics, Chinese Academy of Sciences); ZHANG, Zimin (Institute of Modern Physics, Chinese Academy of Sciences); ZHANG, Zimin (Institute of Modern Physics, Chinese Academy of Sciences); ZHANG, Zimin (Institute of Modern Physics, Chinese Academy of Sciences); ZHANG, Zimin (Institute of Modern Physics, Chinese Academy of Sciences)

Presenter: CAO, Shuchun (Institute of Modern Physics, Chinese Academy of Sciences)

Session Classification: Tuesday Poster Session

Track Classification: MC8: Applications of Accelerators, and Engagement for Industry and Society: MC8.U09 Other Applications