Speaker
Description
The J-PARC Main Ring achieves a high extraction efficiency of 99.5% during 30 GeV slow extraction at the current beam power of 80 kW. However, at beam powers above 30 kW, we observed ring-wide beam losses due to transverse beam instability associated with vacuum pressure rises and electron cloud effects, which are believed to be triggered by longitudinal microwave structures. To achieve stable operation at 80 kW, we implemented phase offset injection into RF buckets and two-step RF voltage reduction during debunching. For planned higher-power operations, we propose tuning the slippage factor to suppress the microwave structures during debunching. The Main Ring features a unique imaginary transition gamma lattice, and we discovered that the slippage factor can be adjusted using appropriate combinations of four quadrupole families in the arc sections while maintaining the operating tune and achromatic conditions in the long straight sections. Such slippage manipulation would be impossible in a ring with a conventional FODO lattice. The slippage factor can be ramped from its nominal value to a suppressing value during acceleration.
Region represented | Asia |
---|---|
Paper preparation format | LaTeX |