IPAC'25 - the 16th International Particle Accelerator Conferece

Contribution ID: 1461 Contribution code: WEPM005

Type: Poster Presentation

Aspects of stroboscopic averaging for the invariant spin field

Wednesday 4 June 2025 16:00 (2 hours)

A new method is formulated for calculating the invariant spin field (ISF) at a phase space point by leveraging the property that spins which are distributed along the ISF achieve maximum time-averaged polarization. To quantify this, we construct the time-average of spin rotation matrices beginning at a certain phase space point. It is recognized that the ISF vector at that point achieves the matrix-norm, meaning that the ISF corresponds to the first right-singular vector of that matrix. We show the relation of this method with traditional stroboscopic averaging, such that these methods are two sides of the same coin. This approach offers a new perspective in invariant spin field calculations.

Footnotes

Paper preparation format

LaTeX

Region represented

America

Funding Agency

This work has been supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy, No. DE SC-0024287, and DE-SC0018008.

Author: HAMWI, Eiad (Cornell University (CLASSE))

Co-authors: HOFFSTAETTER, Georg (Cornell University (CLASSE)); DEVLIN, Joseph (Cornell University (CLASSE)); SIGNORELLI, Matthew (Cornell University (CLASSE))

Presenter: HAMWI, Eiad (Cornell University (CLASSE))

Session Classification: Wednesday Poster Session

Track Classification: MC5: Beam Dynamics and EM Fields: MC5.D11 Code Developments and Simulation Techniques