Speaker
Description
At the Japan Proton Accelerator Research Complex (J-PARC), low-emittance muon beams with a linear accelerator (linac) are proposed as a new approach to precisely measure the anomalous magnetic moment and electric dipole moment of the muon. Low-emittance muon beams can also be employed as new probes for non-destructive imaging techniques to see through structures. In the low-velocity section of the muon linac, a radio-frequency quadrupole linac (RFQ) and an interdigital H-mode drift tube linac (IH-DTL) are used to accelerate muons to β = v/c =0.08 and 0.28, respectively, at an operating frequency of 324 MHz. To reduce construction costs, the IH-DTL employs the alternating phase focusing (APF) method, which uses the transverse focusing force derived from the RF electric field. Because the APF method limits the transverse and longitudinal acceptances simultaneously, careful beam diagnostics and commissioning are essential to suppress the emittance growth derived from beam mismatches. In this paper, the results of the tracking simulation and the development status of the diagnostic and transport beamlines in the low-velocity section are described.
Region represented | Asia |
---|---|
Paper preparation format | LaTeX |