IPAC'25 - the 16th International Particle Accelerator Conferece

Contribution ID: 1945 Contribution code: TUPS124

Type: Poster Presentation

Understanding the effects of electron affinity on spin-polarized photoemission

Tuesday 3 June 2025 16:00 (2 hours)

GaAs photocathodes operated in a negative electron affinity (NEA) state typically achieve 35%-40% photoemitted electron spin polarization (ESP). However, when operated in a slight positive electron affinity (PEA) state, the barrier for electrons to escape into vacuum can cause upwards of 50% ESP electron beams to be photoemitted. In this proceeding, we explore the mechanisms and limitations of this effect. This is done experimentally with ESP measurements performed in a retarding-field Mott polarimeter on GaAs photocathodes with varying electron affinities, and theoretical modeling of material properties through Monte Carlo simulations.

Footnotes

Paper preparation format

LaTeX

Region represented

America

Funding Agency

This work is supported by the U.S. National Science Foundation under Award PHY-1549132, the Center for Bright Beams and by the U.S. Department of Energy under Award DE-SC0023517.

Author: LEVENSON, Samuel (Cornell University (CLASSE))

Co-authors: GALDI, Alice (Università degli Studi di Salerno); BAZAROV, Ivan (Cornell University (CLASSE)); MAX-SON, Jared (Cornell University); CALLAHAN, John (Northern Illinois University); REAMON, Mark (Cornell University (CLASSE)); ANDORF, Matthew (Cornell University (CLASSE)); CHUBENKO, Oksana (Northern Illinois University)

Presenter: LEVENSON, Samuel (Cornell University (CLASSE))

Session Classification: Tuesday Poster Session

Track Classification: MC3: Novel Particle Sources and Acceleration Techniques: MC3.T02 Electron Sources