IPAC'25 - the 16th International Particle Accelerator Conferece

Contribution ID: 1417 Contribution code: TUPM096

Type: Poster Presentation

Development of an achromatic spectrometer for a laser-wakefield-accelerator experiment

Tuesday 3 June 2025 16:00 (2 hours)

The large gradients of plasma-wakefield accelerators promise to shorten accelerators and reduce their financial and environmental costs. For such accelerators, a key challenge is the transport of beams with high divergence and energy spread. Achromatic optics is a potential solution that would allow staging of plasma accelerators without beam-quality degradation. For this, a nonlinear plasma lens*is being developped within the SPARTA** project. As a first application of this lens, we aim to implement an achromatic spectrometer for electron bunches produced by a laser-wakefield accelerator. We report on progress in designing such an experiment.

Footnotes

Drobniak, P., Adli, E., Anderson, H. B., Dyson, A., Mewes, S. M., Sjobak, K. N., Thévenet, M., Lindstrøm, C. A. (2024). Development of a nonlinear plasma lens for achromatic beam transport. arXiv preprint arXiv:2411.00925. ** European Commission, Staging of plasma accelerators for realizing timely applications (2023). URL https://doi.org/10.3030/101116161

Paper preparation format

LaTeX

Region represented

Europe

Funding Agency

European Research Council (ERC Grant No. 101116161)

Author: PEÑA, Felipe (Deutsches Elektronen-Synchrotron)

Co-authors: LINDSTRØM, Carl A. (University of Oslo); KALVIK, Daniel (University of Oslo); ADLI, Erik (University of Oslo); SJOBAK, Kyrre (University of Oslo); DROBNIAK, Pierre (Laboratoire de Physique des 2 Infinis Irène Joliot-Curie)

Presenter: PEÑA, Felipe (Deutsches Elektronen-Synchrotron)

Session Classification: Tuesday Poster Session

Track Classification: MC3: Novel Particle Sources and Acceleration Techniques: MC3.A22 Plasma Wakefield Acceleration