IPAC'25 - the 16th International Particle Accelerator Conferece

Contribution ID: 985 Contribution code: TUPM040

Type: Poster Presentation

Molecular beam epitaxial growth of Sodium Antimonide photocathodes

Tuesday 3 June 2025 16:00 (2 hours)

Cornell University has been working on developing techniques to grow single crystal photocathodes for electron sources using the Molecular Beam Epitaxy (MBE) technique. As a result, the first single crystal Cs3Sb photocathode was produced, which has shown high quantum efficiency and is expected to have a low Mean Transverse Energy (MTE). Now, other alkali materials are being explored. In this work, we report the epitaxial growth of Na-Sb photocathodes at the PHOtocathode Epitaxy Beam Experiments (PHOEBE) laboratory at Cornell University, employing a sequence of shuttered growth steps to form distinct unit cells. The photocathodes were characterized by Quantum Efficiency (QE) measurements and Reflection High-Energy Electron Diffraction (RHEED) patterns collected during growth. The RHEED streaky pattern shows angle dependence, confirming their single crystal structure. Notably, these Na-Sb photocathodes exhibited a QE exceeding 1% at 400 nm, which is much higher than previous reports on this compound. The possible reasons for this discrepancy are discussed.

Footnotes

Paper preparation format

LaTeX

Region represented

America

Funding Agency

This work was supported by the U.S. National Science Foundation under Award PHY-1549132, the Center for Bright Beams.

Author: ECHEVERRIA, Elena (Cornell University (CLASSE))

Co-authors: FLINT, Abigail (Cornell University (CLASSE)); GALDI, Alice (Università degli Studi di Salerno); MAX-SON, Jared (Cornell University)

Presenter: ECHEVERRIA, Elena (Cornell University (CLASSE))

Session Classification: Tuesday Poster Session

Track Classification: MC2: Photon Sources and Electron Accelerators: MC2.T02 Electron Sources