1–6 Jun 2025
Taipei International Convention Center (TICC)
Asia/Taipei timezone

Studying photoemissive properties of stable Cs-Sb compound thin-film photocathodes using a combination of Monte Carlo simulations and Density Functional Theory

TUPM049
3 Jun 2025, 16:00
2h
Exhibiton Hall A _Magpie (TWTC)

Exhibiton Hall A _Magpie

TWTC

Poster Presentation MC2.T02 Electron Sources Tuesday Poster Session

Speaker

Daniel Franklin (Northern Illinois University)

Description

Cs-Sb compound thin-film photocathodes are an excellent candidate to produce bright electron beams for use in various accelerator applications. Despite the virtues of these photocathodes being known, the mechanics that govern their photoemission are not well-understood. Crystalline and other material properties affect the mean transverse energy (MTE) and quantum efficiency (QE) and, thus, the overall brightness. Electrons photoemitted from these thin-film crystals experience an unexpected energy loss similar to that found in bulk crystals despite their being a significantly shorter transport phase. Deeply understanding the relationship between the crystalline properties and the emitted electron beam’s brightness, as well as this drop in energy, is vital to generating ultra-bright electron beams for advanced accelerator applications. The purpose of this work is to use the Monte Carlo method to simulate photoemission from semiconducting films with electronic band structure parameters supplied by Density Functional Theory (DFT) calculations. This method is used to study all steps of photoemission and to identify the key parameters necessary for optimizing photocathode performance.

Region represented America

Author

Daniel Franklin (Northern Illinois University)

Co-authors

Oksana Chubenko (Northern Illinois University) Tomas Arias (Cornell University) Tyler Wu (Cornell University)

Presentation materials

There are no materials yet.