

### **Design and Commissioning of HEPS Instrumentation**

<u>Yanfeng Sui</u>, Jun He, Dechong Zhu, Lingda Yu, Yaoyao Du, Taoguang Xu, Ying Zhao, Qiang Ye, Zhi Liu, Huizhou Ma, Xiaoyu Liu, Lin Wang, Wan Zhang, Shujun Wei, Fangqi Huang, Yanhua Lu, Fang Liu, Junhui Yue, Jianshe Cao

> HEPS Beam Diagnostics Group 2024.09.10 Beijing, China



13<sup>th</sup> International Beam Instrumentation Conference, Sept.9-13, 2024 ,Beijing, China



### Introduction of HEPS

- •HEPS beam instrumentation design
- Commissioning of beam instrumentation
- Summary

# High Energy Photon Source (HEPS)



# High Energy Photon Source (HEPS)

| Parameters                  | Value                 |
|-----------------------------|-----------------------|
| Energy                      | 6.0 GeV               |
| Circumference               | 1360.4 m              |
| Main RF frequency           | 166.6 MHz             |
| Harmonic cavity frequency   | 499.8 MHz             |
| Harmonic number of main RF  | 756                   |
| Natural emittance           | 34.82 pm              |
| Bunch Length                | 5.02 mm               |
| Working point(x/y)          | 114.14/ 106.23        |
| Bunch length (zero current) | 5.02 / 29.70 (HC)     |
| Damping time (x/y/z)        | 10.2 / 18.9 /         |
|                             | 16.4 ms               |
| Beam current                | 200 mA                |
| Synchrotron frequency       | ~1.1×10 <sup>-3</sup> |





## **Beam Instrumentation in HEPS**

| Beam instrumentations                   | Purpose                  | Linac | LB | Booster | BR | RB | Ring   |
|-----------------------------------------|--------------------------|-------|----|---------|----|----|--------|
| BPM                                     | Position                 | 8     | 8  | 80      | 11 | 11 | 576+24 |
| ICT                                     | Bunch charge             | 7     | 2  | -       | 2  | 2  | -      |
| DCCT                                    | Beam average current     | -     | -  | 2       | -  | -  | 2      |
| Bunch Current Monitor                   | Bunch current            | -     | -  | 1       | -  | -  | 1      |
| OTR/YAG                                 | Beam profile             | 7     | 2  | -       | 2  | 2  | -      |
| Synchrotron Light Monitor               | Beam size                | -     | -  | 2       | -  | -  | 1      |
| Pilot tune/3D                           | Tune                     | -     | -  | 1       | -  | -  | 1      |
| Frequency sweeping/FFT                  |                          |       |    |         |    |    |        |
| Beam loss monitor                       | Beam loss                | -     | -  | 4       | -  | -  | 192    |
| Bunch-by-bunch feedback system          | Instability mitigation   | -     | -  | 3       | -  | -  | 3      |
| High-resolution displacement monitor    | Chamber displacement     | -     | -  | -       | -  | -  | 8      |
| Streak camera (visible light beam line) | Bunch length             | -     | -  | -       | -  | -  | 1      |
| Bunch cleaning system                   | Obtain high bunch purity | -     | -  | -       | -  | -  | 1      |
| Energy analyze station                  | Energy measurement       | 2     |    |         |    |    |        |
| Emittance                               | Emittance measurement    | 2     |    |         |    |    |        |

# 



13<sup>th</sup> International Beam Instrumentation Conference, Sept.9-13, 2024 ,Beijing, China



## **Factors affecting BPM resolution**





## **Ground vibration**



13<sup>th</sup> International Beam Instrumentation Conference, Sept.9-13, 2024, Beijing, China

# High stability low expansion BPM support



Thermal stability :  $\pm 20$ nm;  $\mu < 1.02$  (No magnetic field within 670mm of the beam)



#### Number and distribution of the HEPS BPMs.

| Instru | Instruments |   | LTB | BTS | STB | Dump<br>line | Booster | Storage<br>ring |
|--------|-------------|---|-----|-----|-----|--------------|---------|-----------------|
|        | Button      | 2 | -   | -   | -   | -            | 79      | 578             |
| BPM    | Stripline   | 6 | 8   | 11  | 11  | 2            | 1       | -               |



#### LINAC button and Stripline BPMs

#### Each 7BA unit is equipped with 12 BPMs



Jun He, Yanfeng Sui, Jun Hui Yue, Jianshe Cao et al Meas. Sci. Technol. **33** (2022) 115106 (16pp)





Storage ring BPMs.



Booster BPMs.





#### 13<sup>th</sup> International Beam Instrumentation Conference, Sept.9-13, 2024 ,Beijing, China



## •A new calibration system based on Goubau line is used for BPM calibration. k results measured by Goubau line calibration system



Jun He, Yanfeng Sui, Jun Hui Yue, Jianshe Cao et al Nuclear Inst. and Methods in Physics Research, A 1045 (2023) 167635



## **Feedthroughs research and process Improvement**



#### Structural optimization







Stripline characteristic impedance measured by TDR





| Reducing | permeability |
|----------|--------------|
|----------|--------------|

x-ray tomography results for two feedthrough prototypes.

#### 13th International Beam Instrumentation Conference, Sept.9-13, 2024, Beijing, China

Feedthrough sorting and Electro-mechanical offset measured by VNA

#### •Capacitance measued by TDR(risetime)







## **Summary of BPM characterization**

| Measurement object      | Parameters                                    | Standard value                | Amount | Average             | STD       |
|-------------------------|-----------------------------------------------|-------------------------------|--------|---------------------|-----------|
| Stripline               | Characteristic impedance                      | 50 Ω                          | 152    | 51 Ω                | 0.7 Ω     |
|                         | Radius                                        | 4 mm                          | 500    | 3.991 mm            | 6 µm      |
| Feedthrough with button | Distance between the button and welding point | 20 mm                         | 500    | 19.969              | 6 µm      |
|                         | Capacitance                                   | 2.2 pF (CST)                  | 500    | 2.385 pF            | 0.044 pF  |
|                         | Permeability                                  | <1.03                         | 380    | 1.112               | 0.022     |
|                         | Permeability                                  | <1.03                         | 230    | 1.019               | 0.003     |
|                         | Distance between the button and pipe axis     | 16.098 mm                     | 280    | 16.156 mm           | 43 µm     |
|                         | Electro-mechanical offset X/Y                 | 0                             | 578    | 2.7/3.5 μm          | 53 /52 µm |
| Button-type BPM         | Calibration coefficient Offset X/Y            | <1 µm (CST)                   | 62     | 1 /21 µm            | 7 /13 µm  |
|                         | Calibration coefficient k X/Y                 | 11.406 mm/ 11.597<br>mm (CST) | 62     | 11.182/11.336<br>mm | 20/14 µm  |
|                         | Calibration coefficient $A_{0,1}/B_{1,0}$     | <1 µm (CST)                   | 62     | -74/-75 μm          | 63/60 µm  |

#### 13<sup>th</sup> International Beam Instrumentation Conference, Sept.9-13, 2024 ,Beijing, China



### **BPM blocks summary**

Beam position monitors for the HEPS (TUP11)

### •More detail about BPM can be found in reference

J. He, Y. F. Sui, J. H. Yue, J. S. Cao et al. TUP11 This conference.

J. He, Y. F. Sui, J. H. Yue, J. S. Cao et al. Electro-mechanical offset measurements of beam position monitors.

Radiation Detection Technology and Methods (2023) 7:288–296

J. He, Y. F. Sui, J. H. Yue, J. S. Cao et al. Beam position monitor design for the High Energy Photon Source. Meas. Sci. Technol. 2022, 33, 115106.

J. He, Y. F. Sui, J. H. Yue, J. S. Cao et al. Design and fabrication of button-style beam position monitors for the HEPS synchrotron light facility, NUCL SCI TECH (2022) 33:141

J. He, Y. F. Sui, J. H. Yue, J. S. Cao et al. Design and optimization of a Goubau line for calibration of BPMs for particle accelerators. Nucl. Instrum. Methods Phys. Res. A 2023, 1045, 167635

J. He, Y. F. Sui, J. H. Yue, J. S. Cao et al. Preliminary Analysis of Beam Position Monitor Accuracy. Symmetry 2024, 16, 566.

J. He, Y. F. Sui, J. H. Yue, J. S. Cao et al. Beam Position Monitor Characterization for the High Energy Photon Source Synchrotron. Symmetry 2023, 15, 660.

J. He, Y. F. Sui, J. H. Yue, J. S. Cao et al. Development of BPM feedthroughs for the High Energy Photon Source. Radiation Detection Technology and Methods (2022) 6:460–469





Analog Front End (AFE)

Digital Front End (DFE)





#### **Performance Features**

- ✓ P1dB = +18.5dBm (at ADC Input)
- ✓ IP3 = +39 dBm (at ADC input)
- ✓ NF =6.0dB (LPF and SAW Filter)
- ✓ Channel to Channel Isolation > 40dB
- ✓ Phase difference < 10°</p>
- ✓ Amplitude difference < 5%</p>
- **✓** -3dB Bandwidth  $\approx$  20MHz



**Receiver S-Parameter Characterization** 

13<sup>th</sup> International Beam Instrumentation Conference, Sept.9-13, 2024, Beijing, China

# **Digital Front End Board (DFE)**

#### <u>Development of digital beam position monitor for HEPS (TUP24)</u>

- Xilinx ZYNQ FPGA (XZ7100)
- ► Hard dual-core ARM A9 processor
- Beam signal processing with DDC+CIC+FIR
- Runs standard Debian based Linux Operating System
- Embedded IOC

Features::

- Boot via 32Gbyte micro SD-Card
- Gigabit Ethernet
- >2Gbyte DDR3 Memory (SO-DIMM Module)
- ➢ Four 6.6Gbps SFP modules
- Embedded Event Receiver
- Fast Orbit Feedback
- ➢ 32Mbit FLASH memory





ADF Interface





LFSR: Linear Feed-back Shift-Register FIR filter : Finite Impulse Response filter CIC filter : Cascaded Integrator-Comb filter DDS : Direct Digital Synthesis DDC BPM Block generates IQ data with NCO&ADC The purpose of band-pass filter is to remove the baseline of ADC; COD BPM Block generates TbT, and SA data. DSP filter = CIC+FIR for LowPass Filter and Decimator;



## **Resolution of BPM**







tbt x rms ≈ 393 nm •

60

50

40

30

20

10

tbt y rms ≈ 390 nm ٠

- FA x rms ≈ 162 nm
- FA y rms ≈ 164 nm

- SA x rms  $\approx$  51 nm
- SA y rms ≈ 59 nm •



## **Bundle cable & thermal stability cabinet**



13<sup>th</sup> International Beam Instrumentation Conference, Sept.9-13, 2024, Beijing, China





#### **BLM(Beam Loss Monitor)**

- 4 beam loss monitors (BLM) have been installed in each of the 48 HEPS cell
- •1 BLM is located on the inner side of straight section, the other 3 BLMs are located on the inner side part of bending magnets
- Data acquisition based on open hardware-RedPitaya, can give turn by turn beam loss data

# Synchrotron Radiation Based Beam Diagnostics



- X-ray beam diagnostic beamline is designed with bending magnet as source point.
- •X-ray diagnostic beamline (XBL) is dedicated to capturing beam image and measuring beam sizes using X-ray pinhole and KB mirror imaging.
- Pinhole and KB mirrors share the same source point and also the same X-ray camera, and they are both movable by remote control.

13<sup>th</sup> International Beam Instrumentation Conference, Sept.9-13, 2024 ,Beijing, China



# **Commissioning of beam instrumentation**

13th International Beam Instrumentation Conference, Sept.9-13, 2024, Beijing, China



# **HEPS Commissioning Time-Line**





# **First injection**





15:10, First injection;

19:50, Based on TBT orbit, automatic closed-orbit correction achieves First Turn!









- To display the state of the beam along the ring
- To show number of turns
- To check injected current ( sum is proportional to current)
- To find orbit mismatch or spot obstacles (signal drop)









## **Sum data of BPM**



### • Open RF cavities

• Increase the strength of the sextupoles setting, approaching the theoretical value



## Multi-turns sum data



•30000 turns

13th International Beam Instrumentation Conference, Sept.9-13, 2024, Beijing, China





- •Beam stored! From NPCT data, we can see the beam stored and the beam life is about ~1.3 s.
- •The experiment can be repeated, and we are sure that the beam has been stored.





13th International Beam Instrumentation Conference, Sept.9-13, 2024, Beijing, China



# **Synchrotron Radiation Based Beam Diagnostics**

#### X ray beam line



No pinholePinholeThe First synchrotron light was observed when the beam stored(Left)10mA



# **Synchrotron Radiation Based Beam Diagnostics**

### Visible light beam line



First visible light observed when beam stored

Bunches image captured by streak camera



## **Beam loss data**



13<sup>th</sup> International Beam Instrumentation Conference, Sept.9-13, 2024, Beijing, China



## Beam current and life ~1min @ 70 μA

### NPCT+Data acquisition



13<sup>th</sup> International Beam Instrumentation Conference, Sept.9-13, 2024 ,Beijing, China



## **Bunch current monitor**

### Button BPM + Home made BBB electonics HEPS储存环束团流强



Development of bunch-by-bunch beam charge monitor for High Energy Photon Source (THP05)

#### 13th International Beam Instrumentation Conference, Sept.9-13, 2024, Beijing, China

æ.



#### Tune kicker + button BPM+ spectrum analyzer



13<sup>th</sup> International Beam Instrumentation Conference, Sept.9-13, 2024 ,Beijing, China



- •HEPS, being a fourth-generation ring with ultra low emittance of less than 50 pm rad, presented significant challenges during commissioning.
- •The successful beam commissioning of the HEPS storage ring is partly attributed to the reliable beam measurement system providing diverse and customized observation methods.
- •The self-developed digital BPM and BLM electronics contributed more in first turn and day one commissioning.

Thank You for Your Attention!