Longitudinal Bunch Diagnostics in the Terahertz Domain at TELBE using Fast Room Temperature Operable **Zero-bias Schottky Diodes**

Rahul Yadav^(1,2), Michael Kuntzsch⁽³⁾, Sascha Preu⁽²⁾ and Andreas Penirschke⁽¹⁾

⁽¹⁾ Technische Hochschule Mittelhessen, Friedberg (Hessen), Germany ⁽²⁾ Technische Universität Darmstadt, Darmstadt, Germany ⁽³⁾ Helmholtz - Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany

Results & Discussion

Bunch charge sweep study:

- For TELBE repetition rate range is 10 to 500 kHz, which means detector response time must be 100 to 2 µs
- ZBSD measures time-domain $\sum_{n=20}^{\infty}$ trace with FEL repetition rate

Trace of electron bunches

TECHNISCHE HOCHSCHULE MITTELHESSEN

- Temporal-spatial characterization of ps scale terahertz (THz) pulses at particle accelerators [1-2]
- Requirement of robust, fast, sensitive and stable THz detectors
- Operation at room temperature, no need of cryogenic condition
- Zero bias Schottky diode detectors: less noise due to absence of shot noise
- Tens of GHz IF \rightarrow Large video bandwidth \rightarrow Short THz pulse detection
- Broadband detection of ps scale THz pulses: tens of GHz to several THz

Experimental setup

- of 50 kHz and electron bunch charge of $q_B = 28 \, pC$ exemplifies the full width half maximum of 487 ps with rise ect Det time of 163 ps
- ZBSD response satisfies the bunch diagnostic requirement in respect to response time
- No post-detection amplifier was used in the presented results
- ZBSDA shows similar response trend as pyroelectric detector

Bunch compression study:

- Bunch compression measurements performed at $q_B = 45 \ pC$
- Phase stability of single compression stage is given by [3]:

where, C_0 is compression factor, $\left|\frac{\Delta I_{pk}}{I_{pk}}\right|$ is tolerable relative peak current jitter and

Electron bunch charge sweep

Bunch compression monitoring

- TELBE: Terahertz Electron Linear accelerator with high Brilliance and low Emittance
- SRF gun produce high quality electron beams and high bunch charge
- ZBSD: Zero-bias Schottky diode THz detector with ultra-wide THz bandwidth from 0.05 to 2 THz

Machine parameters	Values	Front side Bac	Back side (interior look)	
FEL type	Single pass	Measurement equipment	Specs	
FEL repetition rate	101.56 kHz	Measurement type	Single shot	
Linac fundamental frequency	1.3 GHz	ZBSD THz detector	0.05 – 2 THz	
Electron source	SRF gun	bandwidth		
Photocathode	Cs ₂ Te	Rdiff of ZBSD	7.14 kOhm	
Bunch energy	28 MeV	Read-out Oscilloscope	R&S RTO6-B94	
Bunch length	~ 200 fs	(Osci)		
Magnetic bunch compressor	< 500 mm	Osci Sample rate	10 GS/s	
Operation mode	Continuous wave	Osci resolution bandwidth	40 ps	
FEL THz frequency	0.7 THz	Osci rise/fall time	104 ps	
Pulse energy	< 8 µJ	Record length	1 kpts	
# periods	8	Read-out cable	LDF1-50	

Schematic of developed ZBSD detector

SMA connector

Brass housing

- $Ø_0$ is nominal RF chirp phase
- LA2 phase is an offset phase used as a reference for bunch compression
- Practically expected agreement observed between ZBSD and pyroelectric response

Conclusions & Outlook

- ZBSD THz detector application as beam compression monitor (BCM) and beam diagnostics
- Better response time (FWHM of 487 ps and rise time of 163 ps) compared to similar old literature [4]
- Planned rigorous test with ZBSD THz detector in September and October 2024
- Commissioning of the detectors at accelerator facilities after successful tests

References

[1] S. Preu, et al., IEEE Transactions on Terahertz Science and Technology, 5(6), pp. 922-929, Nov. 2015.

[2] A. Penirschke, et al., IRMMW-THz, 2014, pp. 1-2, doi: 10.1109/IRMMW-THz.2014.6956027.

- [3] W.A. Barletta, et al., Nuclear Instruments and Methods in Physics Research Section A, 618, pp. 69-96, June 2010.
- [4] M. Laabs, et al., Journal of synchrotron radiation., 25(5), pp. 1509-1513, July 2018.

Own related work

Acknowledgement

J technische universität dortmund

Bundesministerium für Bildung und Forschung

Rahul Yadav, M.Sc rahul.yadav@iem.thm.de

Contract no.: 05K22RO1 and 05K22RD1