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Abstract Preliminary Results

To meet CERN's demand for alternative imaging solutions due to the
discontinuation of rad-hard cameras, a multimode fiber (MMF) o | | | o
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zones is investigated!'. Despite challenges with image distortion at 2 ' |
the fiber's output, a machine learning approach using a deep
convolutional encoder-regressor network was developed. This end-
to-end model allows the direct estimation of key transverse beam
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parameters like centroids and sizes from the fiber output, bypassing e
the need for full image reconstruction and reducing the model size as 000 0325 050 075 100 02 04 06 08 220 20 o 20
well as training time, providing a robust and safe imaging solution Predicted Beam Centroids rredicted Beam Cenfroids rrediction Error (70
fOI’ high-radiation Settings. E;Ernatlon .vs. Actual Beam \//illdths 0.1 Beam Wi(.:lji??Reydual Peze;iiii Bz:i(\:,lvlidctzon Errors
. /// L nime, 30 - B Vertical Beam Widths Jl
0.4 - : //’/ 60 -
03— ‘

NN
o

0.2

Methodology

Scintillation Screen

S5
Actual Beam Widths
S
\
Residuals
S
N
Frequency

N
o

0.11 4

"+« Horizontal Beam Widths —0.4 1 - Horizontal Beam Widths
’ . Vertical Beam Widths - Vertical Beam Widths I

0.0+ : : : : ; : QL=

0.0 0.2 0.4 0.6 0.05 0.10 0.15 —40 —20 0

e beam Predicted Beam Widths Predicted Beam Widths Prediction Error (%)

Figure 3. Test set prediction statistics. (a) beam centroids. (b) beam widths.

Viewport . : : :
Quadrupole magnets Fig. 3 displays the estimation results for the beam parameters over 600
OBJ 1 samples from the testset. Most predictions cluster around the diagonal,
ﬁ D h indicating relatively small prediction errors. The error distribution is slightly
BS RN J | _— shifted from the center; this shift is due to an imbalance in the dataset,
L1 _— where more data pertain to certain positions and sizes.
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high radiation, recording the beam's transverse distribution on a scintillating 0. |

screen. A beam splitter divides this initial image into a secondary path, 0.8 e,

which shrunk via a lens system, and then transmitted through an MMF to o L e wien:

lower radiation area. At the distal end of the fiber, Camera 2 captures the 00 02 04 06 08 10 0 o2 oo 08 1O

output image. Figure 4. Transverse beam parameter prediction on a test sample.

Dataset: Data acquisition occurred at the CERN's CLEAR facility, employing Fig. &4 illustrates a prediction example using test data. The left image shows
the gbovementloned apparatus. A quaglrupole SECLESHAINRD e.melnted to the input data to the model from MMF output. The right image compares
modity the 150 MeV electron beam’s size and position, resultingina the real beam parameters with the model's estimation, demonstrated on
collection of approximately 6000 paired images for training and evaluation. the corresponding original beam image

Conclusion & Future Works

Test set prediction RMSE of maximum 0.069 is achieved. A clear correlation
was observable between the real and predicted values. The prediction bias
due to the unbalanced training set distribution could be improved by
enhancing the variability of the dataset in the future.
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Future works:

e Utilizing Digital Micromirror Devices (DMD): Employ DMD to generate

arge, high-variance datasets using computer-simulated patterns.

 Perturbation studies: Investigate the impacts of mechanical vibrations,
thermal variations, and radiation accumulation's effects on fiber's
transmission property.

» Machine learning models: Explore cutting-edge models, such as the

Figure 2. Convolutional encoder-regressor network.

Model: an image encoder incorporating 6 layers of convolution kernel to
compress the fiber output and extract abstract representations from the
irregular speckle patterns generated by MMF!2, This process is followed by
a fully connected dense network, which performs regression analysis to
derive four beam parameters from the encoder latent space.

Swin-Transformer, as the encoder.
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