
Research on Visualization and Indexing of PV Data 
Based on the ELK Stack

Introduction
In response to the escalating demands of large-
scale scientific facilities, this paper outlines an 
innovative real-time data acquisition and analysis 
solution utilizing Kafka and the ELK stack, focused 
on Beam Position Monitors (BPM) in particle 
accelerators. With traditional data processing 
methods buckling under rapidly increasing data 
volumes, this study introduces a high-throughput, 
low-latency, and reliable system designed to 
manage high-velocity data streams. By integrating 
Kafka for data collection and leveraging the ELK 
stack for processing and visualization, the proposed 
pipeline offers standardized data handling and real-
time analytical capabilities. This streamlined 
approach not only enhances data processing 
efficiency and reliability but also significantly 
improves operational responsiveness, providing 
critical insights for advancements in experimental 
physics.

Results

Aim
The core of this research is to develop a system 
capable of handling high-speed data streams and 
providing real-time feedback. The goal is to create 
an efficient, reliable, and real-time data processing 
system to optimize beam position monitoring in 
particle accelerators. Through the automation and 
standardization of data collection, as well as the 
enhancement of real-time analysis and visualization 
capabilities, the system can instantly monitor and 
respond to critical changes during experiments, thus 
improving the precision and efficiency of the 
experimental processes.

Method

Conclusion

This research proposes a method for real-time 
analysis and visualization of PV data within BPM 
using the Kafka message queue and ELK stack. 
Given the extensive data querying and processing 
requirements, this method has significant practical 
value. The research approach combines Docker 
container technology and a highly available 
Kubernetes cluster with a microservices 
architecture, enhancing system stability and 
scalability for handling large-scale data in major 
scientific installations. The system has undergone 
prolonged testing in a production environment, 
demonstrating good operational performance and 
validating the technical feasibility of this approach. 
Future research will integrate different system data 
collection, querying, and processing needs to further 
enhance system performance and reliability.

Li Yukun,  Cao Jianshe,  Ye Qiang,  Du Yaoyao
Institute of High Energy Physics, Chinese Academy of Sciences

• Data Collection: PV variables from BPM 
electronic devices are automatically transmitted 
to the Kafka message queue, standardizing 
data collection.

• Data Processing: The data is processed by 
Logstash, which enriches the incoming data 
streams and forwards them in JSON format to 
Elasticsearch for storage and indexing.

• Data visualization：By transforming PV data 
into indexed form, it is serialized and stored in 
Elasticsearch. Kibana searches for data indices 
from Elasticsearch and presents the data in a 
visual format. Kibana also supports various data 
sources.

• System Architecture: The system utilizes a 
microservices architecture, deployed on a 
Kubernetes cluster using Docker containers to 
enhance scalability, portability, and ease of 
deployment across different environments.

• Operational Reliability and Scalability: The 
integration of Kafka with Zookeeper ensures 
high reliability and consistency in data handling 
within the Kafka cluster, while the ELK stack 
facilitates efficient data search, analysis, and 
visualization.

To construct an efficient and reliable real-time 
beam position data processing system, this study 
employs advanced designs and methods in data 
acquisition, data processing, data visualization, 
system architecture, and system reliability and 
scalability.

Producer A

Producer B

Topic A
Partition 0

Topic A
Partition 1

Topic A
Partition 0

Topic A
Partition 1

Message 0 Message 1

Consunmer 
A

Consunmer 
B

Zookeeper

Consunmer 
C

Kafka Cluster

Leader Follower

Follower Leader

Broke1

Broke2

Broke3 Partition0

Fig.1 Kafka architecture diagram

• Producers:Producers are responsible for 
publishing messages to Kafka. In the diagram, 
Producer A and Producer B are both message 
publishers.Each producer can send messages to 
one or more Kafka topics.

• Topics and Partitions:Kafka organizes data into 
topics. Each topic can be divided into multiple 
partitions, where messages are stored.In the 
diagram, Topic A is split into two partitions: 
Partition 0 and Partition 1. This design enhances 
data throughput and scalability.Messages are 
distributed to different partitions, typically based 
on the hash value of a key.

• Consumers:Consumers read data from Kafka 
topics. They can be standalone applications or 
services tasked with processing data and 
possibly performing further 
operations.Consumers can form a group to 
consume a topic together, improving processing 
efficiency.In the diagram, Consumer A, 
Consumer B, and Consumer C are consumers 
who can read data from different partitions of the 
same topic.

• Zookeeper:Zookeeper manages Kafka's 
metadata and maintains the cluster's state, such 
as topic configuration information and partition 
assignment.It also coordinates the work of 
consumers, such as determining which 
consumers are responsible for which partitions.

Kafka is a distributed streaming platform used 
primarily for handling high-speed and high-volume 
data streams. Here are the key components 
depicted in the diagram and their functions:

Database

Kafka Cluster

Elasticsearch Cluster

Kibana 

Start

EPICS IOC

PV Update

Data Acquisition

Logstash 

No

Yes

Fig.2 Data Transmission Flowchart

When the PV data in the 
IOC is updated, the data is 
written to the database. The 
data acquisition program 
retrieves the updated data 
from the database, converts 
it into JSON format, and 
writes it to a data cache. At 
this point, the data in the 
cache is in array form; it is 
converted into a list format, 
and the cached data is then 
written into a specified 
Kafka message topic. Once 
the data is written to Kafka, 
it is sent to the 
Elasticsearch cluster via the 
Logstash pipeline and a 
data index is created, 
ultimately realizing data 
visualization on the Kibana 
interface.

Kube-Api-Server

Kube-Scheduler

Kube proxy

Kube-Controler-Manager

Kubelet

Kube proxy

Kubelet

Master

Node1

Node2

ETCD

Kafka

Kafka

Zookeeper

Archiver Database

Logstash Elasticsearch

Elasticsearch

Elasticsearch

Kibana

Fig.3 System architecture diagram

To enhance the system's compatibility across 
various environments, as well as to improve its 
portability and scalability, the entire system 
described in this document employs a microservices 
architecture. It uses the Docker container engine to 
deploy Kafka, Zookeeper, Logstash, Elasticsearch, 
and Kibana within a three-node Kubernetes high-
availability cluster. The data acquisition program is 
implemented using Python.

Configuration for services such as Kafka, 
Zookeeper, and the ELK stack is defined through 
the writing of YAML files. These configuration files 
enable the definition of services within a Kubernetes 
cluster, including Service, Deployment, and 
Statefulset. Deployments are typically used to 
manage stateless applications, and services like 
Kafka, Zookeeper, Logstash, and Kibana are 
categorized as Deployment types, which usually do 
not involve data storage issues. Kafka, serving as a 
message queue, typically does not persist data 
continuously. Statefulsets are designed to run 
applications that require persistent states. When 
configuring the Elasticsearch service, 3 replicas 
were created, and a persistent volume 
(PersistentVolume) was also created for each of the 
three pods, ensuring each pod has its own 
persistent storage. Even if a pod is rescheduled to 
another node, its storage will be remounted to the 
corresponding pod.

Acknowledgements
Special thanks to Mr Qiang Ye and Mr Yaoyao Du 
for the assistance in data collection. Thank to Prof. 
Jianshe Cao for his supporting to my research. 


