
Readout Electronics
• MicroTCA.4-based electronics were developed [9].

› An RF frontend RTM and a high-speed digitizer AMC.
› 16 BPMs (2 cells) can be processed in one unit.

• RF detection: Under-sampling scheme
› The ADC sampling rate is 363.40 MHz, which is 5/7 of the acceleration RF frequency of 508.76 MHz.
› The acquired data are digitally down-converted to IQ-baseband data in the FPGA on the digitizer.

• The four types of data stream, Single-pass (208.85 kHz), Turn-by-Turn (208.85 kHz), 
Fast data (10 kHz), and Slow data (10 Hz) can be generated in parallel.

• The temperature is stabilized by a water-cooled 19-inch cabinet within ± 0.1 ℃.
• Pilot tone signals can be injected to signal inputs to monitor gain drifts.
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Introduction
SPring-8-II [1‒3]
• Beam energy: 8 GeV → 6 GeV
• Lattice: 5-bend Achromat
• Natural emittance: 2.4 nm rad → < 100 pm rad
• Brilliance at 10 keV will be 100 times higher.
Requirements for BPM System
• Stability: < 5 μm (for 1 month)
• COD resolution: < 1 μm std
• Single-Pass resolution: < 100 μm std (0.1 nC)
• Electorical center error: < 200 μm
• COD data rates: 3 types in parallel

Turn-by-Turn (209 kHz), 10 kHz, and 10 Hz

BPM Development Status
• Employed by NanoTerasu [4-8].
• A part of the readout electronics 

in SPring-8 was upgraded to the 
new MicroTCA.4-based one [9].
› Adaptive feedforward correction of fast 

helicity-switching beamlines [10].
› Renewal of the single-pass BPM [11].

Performance Evaluation
�D RF Simulation
• Position sensitivity:  X: ��.�� mm,  Y: ��.�� mm

› Definition: The first order coefficient to Δ/Σ.
› About 30 % lower sensivity than before [16].
› However, the required resolution can be satisfied.
› Sensitivity to the machining error is relaxed by the same ratio.

• Heat input from the beam: �.� W/BPM
› Bunch fill pattern: 406 x 0.5 mA (200 mA)
› Relatively higher heat input among the possible fill patterns.
› Bunch length: 14 ps std.

• Contribution to the beam impedance is about � % 
for both transverse and longitudinal directions.
› No additional treatment to reduce the impedance is needed for the BPM head.

Thermal Structure Analysis [��]
• Cooling water: �� ℃,  � L/min (either upstream or downstream of the electrodes)
• Heat releases to the air of �� ℃ and water-cooled beam pipes are also included.
• Maximum temperature: �� ℃
• Maximum displacement: � μm

› If the BPM is not water-cooled, the maximum temperature was 44 ℃ and the maximum displacement 
was more than 10 μm.

• Although this BPM head was not tested with an actual electron beam, this analysis 
was reliable according to the results from another prototype installed into the 
present SPring-� storage ring [��].

Position Resolution
• Single-Pass Resolution: �� μm std. (�.� nC) [��]

› MicroTCA.4-based electronics with the BPM head of the present SPring-8 ring.
› The SPring-8-II BPM has better resolution since the sensitivity is higher.

• COD Resolution: 0.4 μm std. (30 mA, 10 kHz fast data) [9].
› MicroTCA.4-based electronics with the prototype BPM head of the previous design.
› COD resolution is better than 1 μm for a wide range of stored current.

Long-term Stability
• The BPM stability was within � μm for several weeks [�].

› Top-up operation with a constant bunch fill pattern.
› The temperature of the electronics was stabilized within ±0.1 ℃.
› Even if the bunch fill pattern was changed, the stability was within 10 μm for 2 months.

• The stability of the water-cooled ��-inch cabinet was evaluated to be within ±�.� ℃.

Electrical Center Error
• The prototype in SPring-� has � BPM in one block and the difference of the BPM 

readings was within ��� μm.
• The beam-based alignment result from NanoTerasu showed that the displacement 

between the BPM electrical center and the quadrupole magnetic center was less 
than ��� μm std. [�, �].

• If BPMs are carefully fabricated, installed, and tested, the required electrical center 
accuracy for First Turn Steering is expected to be satisfied.

Summary and Prospects
• We have developed a button-type BPM system for SPring-�-II.
• Almost the same BPM system was installed into NanoTerasu and working well.
• Since the cross-sectional shape of the beam pipe was changed, the BPM head was 

redesigned and the performance was evaluated by simulation etc.
› The requirements for SPring-8-II is expected to be satisfied.

• Radiation-resistant cables and MicroTCA.�-based electronics are not changed.
• Beam test results in SPring-� and NanoTerasu were sufficient for SPring-�-II.
• The present SPring-� storage ring will be shut down and dismantled in ���� and 

the SPring-�-II components will then be installed.
• The commissioning of SPring-�-II is scheduled in late ����.
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BPM System

BPM Layout

• 5-bend Cell: 7 BPMs/cell x 44,  Long Straight Cell: 8 BPMs/cell x 4 → 340 BPMs in total

BPM Head
• The cross-sectional shape of the beam pipe was 

changed from squeezed octagonal [�, ��, ��] to 
rhombus-like [�, ��] .
› NanoTerasu is squeezed octagonal [4, 14].

• The button electrode is the same as before [��].
• Electrode material: Molybdenum

› Since molybdenum is better electrical conductivity than 
stainless steel, trapped-mode heating etc. are dissipated 
on the stainless steel side.

• A water cooling channel is equipped either 
upstream or downstream of the electrodes.

• Connector: Reverse-polarity SMA receptacle
› Any spring materials are attached to the cable side.

BPM Support
• Three BPMs 3, 5, 6 in the 5-bend cell are supported 

by an X-ray absorber chamber.
• The support for BPMs 1, 2, 4, 7 were designed.
• The position and angle of the BPM can be adjusted.
• Enough strength to be a fixed point.

› Assuming the stress of 100 N (horizontal) and 350 N (vertical), 
the displacement was estimated to be less than 30 μm.

Signal Cables
• Three types (A, B, C) of coaxial cables are used.

› The same as NanoTerasu [5].
• A-cable: PEEK-insulated semirigid cable

› Radiation-damaged cables in SPring-8 became sensitive to humidity and BPM drift occurred [17].
› Some candidate cables were tested at a radiation environment in SPring-8 [18].
› PEEK-inslated coaxial semirigid cablses were highly radiation-resistive and has a reasonable price.

• B-cable: 10D corrugated coaxial cable (polyethylene)
› Since the radiation dose is not so high around the side of the girder, we selected a corrugated coaxial 

cable having relatively high radiation-resistance and low-loss characteristics.
• C-cable: Standard flexible coaxial cable

› To relay from corrugated coaxial cables to readout electronics in a 19-inch cabinet.
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